Murphy E A, Berger K R
Division of Medical Genetics, Johns Hopkins University School of Medicine, Baltimore, Md 21205.
Am J Med Genet. 1991 Jun 15;39(4):486-92. doi: 10.1002/ajmg.1320390424.
We extend our model of angular homeostasis to correction functions that have a single maximum at a discrepant angle less than pi radians. We find that there are stable, and asymptotically stable, solutions that in general consist of self-intersecting curves. We investigate conditions for these curves to be periodic, and describe their symmetries. One typical pattern of such a closed curve involves a finite number of loops, each having a reflection axis of symmetry, with the complete curve having a cyclic rotation group. These bear a close resemblance to patterns found in lobulated biological structures (such as the petals of a flower or the primitive fetal hand). We further discuss implications for morphogenesis.
我们将角度稳态模型扩展到在小于π弧度的差异角度处具有单个最大值的校正函数。我们发现存在稳定和渐近稳定的解,这些解通常由自相交曲线组成。我们研究这些曲线为周期性的条件,并描述它们的对称性。这种封闭曲线的一种典型模式涉及有限数量的环,每个环都有一个反射对称轴,完整的曲线具有一个循环旋转群。这些与在叶状生物结构(如花瓣或原始胎儿手)中发现的模式非常相似。我们进一步讨论其对形态发生的影响。