Seluanov Andrei, Hine Christopher, Bozzella Michael, Hall Amelia, Sasahara Tais H C, Ribeiro Antonio A C M, Catania Kenneth C, Presgraves Daven C, Gorbunova Vera
Department of Biology, University of Rochester, Rochester, NY 14627, USA.
Aging Cell. 2008 Dec;7(6):813-23. doi: 10.1111/j.1474-9726.2008.00431.x. Epub 2008 Sep 5.
Large, long-lived species experience more lifetime cell divisions and hence a greater risk of spontaneous tumor formation than smaller, short-lived species. Large, long-lived species are thus expected to evolve more elaborate tumor suppressor systems. In previous work, we showed that telomerase activity coevolves with body mass, but not lifespan, in rodents: telomerase activity is repressed in the somatic tissues of large rodent species but remains active in small ones. Without telomerase activity, the telomeres of replicating cells become progressively shorter until, at some critical length, cells stop dividing. Our findings therefore suggested that repression of telomerase activity mitigates the increased risk of cancer in larger-bodied species but not necessarily longer-lived ones. These findings imply that other tumor suppressor mechanisms must mitigate increased cancer risk in long-lived species. Here, we examined the proliferation of fibroblasts from 15 rodent species with diverse body sizes and lifespans. We show that, consistent with repressed telomerase activity, fibroblasts from large rodents undergo replicative senescence accompanied by telomere shortening and overexpression of p16(Ink4a) and p21(Cip1/Waf1) cycline-dependent kinase inhibitors. Interestingly, small rodents with different lifespans show a striking difference: cells from small shorter-lived species display continuous rapid proliferation, whereas cells from small long-lived species display continuous slow proliferation. We hypothesize that cells of small long-lived rodents, lacking replicative senescence, have evolved alternative tumor-suppressor mechanisms that prevent inappropriate cell division in vivo and slow cell growth in vitro. Thus, large-bodied species and small but long-lived species have evolved distinct tumor suppressor mechanisms.
大型、长寿物种比小型、短寿物种经历更多的终生细胞分裂,因此自发肿瘤形成的风险更大。因此,预计大型、长寿物种会进化出更复杂的肿瘤抑制系统。在之前的研究中,我们发现啮齿动物的端粒酶活性与体重共同进化,但与寿命无关:大型啮齿动物物种的体细胞组织中端粒酶活性受到抑制,而小型啮齿动物的端粒酶活性仍然活跃。没有端粒酶活性,复制细胞的端粒会逐渐缩短,直到在某个临界长度时,细胞停止分裂。因此,我们的研究结果表明,端粒酶活性的抑制减轻了体型较大物种患癌症风险的增加,但不一定能减轻长寿物种的风险。这些发现意味着其他肿瘤抑制机制必须减轻长寿物种患癌症风险的增加。在这里,我们研究了来自15种体型和寿命各异的啮齿动物物种的成纤维细胞的增殖情况。我们发现,与端粒酶活性受到抑制一致,大型啮齿动物的成纤维细胞会经历复制性衰老,伴随着端粒缩短以及p16(Ink4a)和p21(Cip1/Waf1)细胞周期蛋白依赖性激酶抑制剂的过表达。有趣的是,不同寿命的小型啮齿动物表现出显著差异:寿命较短的小型物种的细胞显示出持续快速增殖,而寿命较长的小型物种的细胞显示出持续缓慢增殖。我们假设,缺乏复制性衰老的小型长寿啮齿动物的细胞已经进化出了替代的肿瘤抑制机制,这些机制可以在体内防止不适当的细胞分裂,并在体外减缓细胞生长。因此,大型物种和小型但长寿的物种已经进化出了不同的肿瘤抑制机制。