Suppr超能文献

基于反馈线性化的未知非仿射非线性离散时间系统的神经自适应控制

Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems.

作者信息

Deng Hua, Li Han-Xiong, Wu Yi-Hu

机构信息

Key Laboratory of Modern Complex Equipment Design and Extreme Manufacturing, Ministry of Education, Changsha 410083, China.

出版信息

IEEE Trans Neural Netw. 2008 Sep;19(9):1615-25. doi: 10.1109/TNN.2008.2000804.

Abstract

A new feedback-linearization-based neural network (NN) adaptive control is proposed for unknown nonaffine nonlinear discrete-time systems. An equivalent model in affine-like form is first derived for the original nonaffine discrete-time systems as feedback linearization methods cannot be implemented for such systems. Then, feedback linearization adaptive control is implemented based on the affine-like equivalent model identified with neural networks. Pretraining is not required and the weights of the neural networks used in adaptive control are directly updated online based on the input-output measurement. The dead-zone technique is used to remove the requirement of persistence excitation during the adaptation. With the proposed neural network adaptive control, stability and performance of the closed-loop system are rigorously established. Illustrated examples are provided to validate the theoretical findings.

摘要

针对未知非仿射非线性离散时间系统,提出了一种基于反馈线性化的新型神经网络(NN)自适应控制方法。由于反馈线性化方法无法应用于此类系统,因此首先为原始非仿射离散时间系统推导了仿射形式的等效模型。然后,基于神经网络识别出的仿射等效模型实施反馈线性化自适应控制。该方法无需预训练,自适应控制中使用的神经网络权重直接根据输入输出测量在线更新。采用死区技术消除了自适应过程中持续激励的要求。通过所提出的神经网络自适应控制,严格建立了闭环系统的稳定性和性能。提供了实例以验证理论结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验