Suppr超能文献

化学信息对果蝇空间分布的影响:II 参数化、校准和敏感性

The effect of chemical information on the spatial distribution of fruit flies: II Parameterization, calibration, and sensitivity.

作者信息

de Gee Maarten, Lof Marjolein E, Hemerik Lia

机构信息

Biometris, Department of Mathematical and Statistical Methods, Wageningen University, P.O. Box 100, 6700 AC, Wageningen, The Netherlands.

出版信息

Bull Math Biol. 2008 Oct;70(7):1850-68. doi: 10.1007/s11538-008-9329-y. Epub 2008 Sep 9.

Abstract

In a companion paper (Lof et al., in Bull. Math. Biol., 2008), we describe a spatio-temporal model for insect behavior. This model includes chemical information for finding resources and conspecifics. As a model species, we used Drosophila melanogaster, because its behavior is documented comparatively well. We divide a population of Drosophila into three states: moving, searching, and settled. Our model describes the number of flies in each state, together with the concentrations of food odor and aggregation pheromone, in time and in two spatial dimensions. Thus, the model consists of 5 spatio-temporal dependent variables, together with their constituting relations. Although we tried to use the simplest submodels for the separate variables, the parameterization of the spatial model turned out to be quite difficult, even for this well-studied species. In the first part of this paper, we discuss the relevant results from the literature, and their possible implications for the parameterization of our model. Here, we focus on three essential aspects of modeling insect behavior. First, there is the fundamental discrepancy between the (lumped) measured behavioral properties (i.e., fruit fly displacements) and the (detailed) properties of the underlying mechanisms (i.e., dispersivity, sensory perception, and state transition) that are adopted as explanation. Detailed quantitative studies on insect behavior when reacting to infochemicals are scarce. Some information on dispersal can be used, but quantitative data on the transition between the three states could not be found. Second, a dose-response relation as used in human perception research is not available for the response of the insects to infochemicals; the behavioral response relations are known mostly in a qualitative manner, and the quantitative information that is available does not depend on infochemical concentration. We show how a commonly used Michaelis-Menten type dose-response relation (incorporating a saturation effect) can be adapted to the use of two different but interrelated stimuli (food odors and aggregation pheromone). Although we use all available information for its parameterization, this model is still overparameterized. Third, the spatio-temporal dispersion of infochemicals is hard to model: Modeling turbulent dispersal on a length scale of 10 m is notoriously difficult. Moreover, we have to reduce this inherently three-dimensional physical process to two dimensions in order to fit in the two-dimensional model for the insects. We investigate the consequences of this dimension reduction, and we demonstrate that it seriously affects the parameterization of the model for the infochemicals. In the second part of this paper, we present the results of a sensitivity analysis. This sensitivity analysis can be used in two manners: firstly, it tells us how general the simulation results are if variations in the parameters are allowed, and secondly, we can use it to infer which parameters need more precise quantification than is available now. It turns out that the short term outcome of our model is most sensitive to the food odor production rate and the fruit fly dispersivity. For the other parameters, the model is quite robust. The dependence of the model outcome with respect to the qualitative model choices cannot be investigated with a parameter sensitivity analysis. We conclude by suggesting some experimental setups that may contribute to answering this question.

摘要

在一篇配套论文(洛夫等人,《数学生物学公报》,2008年)中,我们描述了一个昆虫行为的时空模型。该模型包含用于寻找资源和同种个体的化学信息。作为模型物种,我们选用了黑腹果蝇,因为其行为有相对完善的记录。我们将果蝇种群分为三种状态:移动、搜索和定居。我们的模型描述了每种状态下果蝇的数量,以及食物气味和聚集信息素的浓度随时间和二维空间的变化。因此,该模型由5个时空相关变量及其构成关系组成。尽管我们试图为各个变量使用最简单的子模型,但空间模型的参数化结果证明相当困难,即便对于这个研究充分的物种也是如此。在本文的第一部分,我们讨论文献中的相关结果及其对我们模型参数化的可能影响。在此,我们关注昆虫行为建模的三个关键方面。首先,(总体的)测量行为特性(即果蝇位移)与作为解释所采用的潜在机制的(详细)特性(即扩散性、感官感知和状态转变)之间存在根本差异。关于昆虫对信息化合物做出反应时行为的详细定量研究很少。可以利用一些关于扩散的信息,但找不到关于三种状态之间转变的定量数据。其次,人类感知研究中使用的剂量 - 反应关系不适用于昆虫对信息化合物的反应;行为反应关系大多是定性已知的,现有的定量信息不依赖于信息化合物浓度。我们展示了如何将常用的米氏型剂量 - 反应关系(包含饱和效应)适用于两种不同但相互关联的刺激(食物气味和聚集信息素)的使用。尽管我们利用所有可用信息进行其参数化,但该模型仍然参数过多。第三,信息化合物的时空扩散很难建模:在10米长度尺度上对湍流扩散进行建模非常困难。此外,我们必须将这个本质上三维的物理过程简化为二维,以便与昆虫的二维模型相适配。我们研究了这种降维的后果,并证明它严重影响了信息化合物模型的参数化。在本文的第二部分,我们展示了敏感性分析的结果。这种敏感性分析可以有两种用途:首先,它告诉我们如果允许参数变化,模拟结果的一般性如何;其次,我们可以用它来推断哪些参数需要比目前更精确的量化。结果表明,我们模型的短期结果对食物气味产生率和果蝇扩散性最为敏感。对于其他参数,模型相当稳健。模型结果相对于定性模型选择的依赖性无法通过参数敏感性分析进行研究。我们通过提出一些可能有助于回答这个问题的实验设置来得出结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc63/2792343/530f7bce8c9f/11538_2008_Article_9329_Fig1.jpg

相似文献

1
The effect of chemical information on the spatial distribution of fruit flies: II Parameterization, calibration, and sensitivity.
Bull Math Biol. 2008 Oct;70(7):1850-68. doi: 10.1007/s11538-008-9329-y. Epub 2008 Sep 9.
2
The effect of chemical information on the spatial distribution of fruit flies: I Model results.
Bull Math Biol. 2008 Oct;70(7):1827-49. doi: 10.1007/s11538-008-9327-0. Epub 2008 Sep 9.
3
Odor-mediated aggregation enhances the colonization ability of Drosophila melanogaster.
J Theor Biol. 2009 Jun 7;258(3):363-70. doi: 10.1016/j.jtbi.2008.08.019. Epub 2008 Aug 27.
4
Exploitation of chemical signaling by parasitoids: impact on host population dynamics.
J Chem Ecol. 2013 Jun;39(6):752-63. doi: 10.1007/s10886-013-0298-8. Epub 2013 May 21.
7
History dependence in insect flight decisions during odor tracking.
PLoS Comput Biol. 2018 Feb 12;14(2):e1005969. doi: 10.1371/journal.pcbi.1005969. eCollection 2018 Feb.
8
Alcohol potentiates a pheromone signal in flies.
Elife. 2020 Nov 3;9:e59853. doi: 10.7554/eLife.59853.
9
Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies?
Oecologia. 2004 Aug;140(4):654-61. doi: 10.1007/s00442-004-1629-9. Epub 2004 Jul 1.
10
The infochemical effect-a new chapter in ecotoxicology.
Environ Sci Pollut Res Int. 2008 Sep;15(6):452-62. doi: 10.1007/s11356-008-0019-y. Epub 2008 Jun 24.

引用本文的文献

1
Exploitation of chemical signaling by parasitoids: impact on host population dynamics.
J Chem Ecol. 2013 Jun;39(6):752-63. doi: 10.1007/s10886-013-0298-8. Epub 2013 May 21.
2
A simple assay to study social behavior in Drosophila: measurement of social space within a group.
Genes Brain Behav. 2012 Mar;11(2):243-52. doi: 10.1111/j.1601-183X.2011.00740.x. Epub 2011 Nov 23.
3
The effect of chemical information on the spatial distribution of fruit flies: I Model results.
Bull Math Biol. 2008 Oct;70(7):1827-49. doi: 10.1007/s11538-008-9327-0. Epub 2008 Sep 9.

本文引用的文献

2
cis-Vaccenyl acetate as an aggregation pheromone inDrosophila melanogaster.
J Chem Ecol. 1985 Dec;11(12):1747-56. doi: 10.1007/BF01012124.
3
The effect of chemical information on the spatial distribution of fruit flies: I Model results.
Bull Math Biol. 2008 Oct;70(7):1827-49. doi: 10.1007/s11538-008-9327-0. Epub 2008 Sep 9.
4
Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective.
Annu Rev Entomol. 2005;50:321-46. doi: 10.1146/annurev.ento.49.061802.123329.
5
An evolutionary explanation of the aggregation model of species coexistence.
Proc Biol Sci. 2003 Aug 7;270 Suppl 1(Suppl 1):S33-5. doi: 10.1098/rsbl.2003.0002.
6
Complexity, pattern, and evolutionary trade-offs in animal aggregation.
Science. 1999 Apr 2;284(5411):99-101. doi: 10.1126/science.284.5411.99.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验