Pasciak A S, Ford J R
Texas A&M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133, USA.
Phys Med Biol. 2008 Oct 7;53(19):5539-53. doi: 10.1088/0031-9155/53/19/018. Epub 2008 Sep 9.
There are many instances where Monte Carlo simulation using the track-structure method for electron transport is necessary for the accurate analytical computation and estimation of dose and other tally data. Because of the large electron interaction cross-sections and highly anisotropic scattering behavior, the track-structure method requires an enormous amount of computation time. For microdosimetry, radiation biology and other applications involving small site and tally sizes, low electron energies or high-Z/low-Z material interfaces where the track-structure method is preferred, a computational device called a field-programmable gate array (FPGA) is capable of executing track-structure Monte Carlo electron-transport simulations as fast as or faster than a standard computer can complete an identical simulation using the condensed history (CH) technique. In this paper, data from FPGA-based track-structure electron-transport computations are presented for five test cases, from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. For the most complex test case presented, an FPGA is capable of evaluating track-structure electron-transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation and with comparable accuracy.
在许多情况下,为了准确地进行剂量及其他计数数据的分析计算和估计,使用电子输运的径迹结构方法进行蒙特卡罗模拟是必要的。由于电子相互作用截面大且散射行为高度各向异性,径迹结构方法需要大量的计算时间。对于微剂量学、辐射生物学以及其他涉及小区域和小计数尺寸、低电子能量或高原子序数/低原子序数材料界面(在此更倾向于使用径迹结构方法)的应用,一种称为现场可编程门阵列(FPGA)的计算设备能够以与标准计算机使用凝聚历史(CH)技术完成相同模拟一样快或更快的速度执行径迹结构蒙特卡罗电子输运模拟。在本文中,给出了基于FPGA的径迹结构电子输运计算针对五个测试案例的数据,从简单的平板式几何结构到涉及电子入射到骨内膜表面细胞的辐射生物学应用。对于所呈现的最复杂测试案例,FPGA能够以比标准计算机执行相同径迹结构模拟快500多倍的速度评估径迹结构电子输运问题,并且具有相当的精度。