Nagase Kenichi, Kobayashi Jun, Kikuchi Akihiko, Akiyama Yoshikatsu, Annaka Masahiko, Kanazawa Hideko, Okano Teruo
Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan.
Langmuir. 2008 Oct 7;24(19):10981-7. doi: 10.1021/la801949w. Epub 2008 Sep 10.
We have prepared poly( N-isopropylacrylamide) (PIPAAm) brush-grafted surfaces with varied temperature-responsive hydrophobic properties through surface-initiated atom transfer radical polymerization (ATRP). These temperature-responsive surfaces were characterized by chromatographic analysis using modified silica beads as a chromatographic stationary phase in aqueous mobile phase. Mixed silane self-assembled monolayers (SAMs) comprising ATRP initiator and silanes with various terminal functional groups were formed on the silica bead surfaces. IPAAm was then polymerized by ATRP using the CuCl/CuCl2/Me6TREN catalyst system in 2-propanol at 25 degrees C for 16 h. The chromatographic retention behavior of steroids on the resulting PIPAAm brushes made on more polar silane components was distinct from that on more apolar silane interfaces. Retention times for steroids on PIPAAm mixed apolar silane graft interfaces were significantly longer than those on analogous polar silane interfaces due to enhanced dehydration of PIPAAm brushes on apolar silane-grafted surfaces. Changes in retention factor, k', on polar silane PIPAAm-grafted interfaces were relatively large compared to that on apolar PIPAAm grafted interfaces due to larger hydration/dehydration alterations of grafted PIPAAm brushes on the former surfaces. Applied step-temperature gradients from 50 to 10 degrees C show that PIPAAm brushes on polar silane interfaces tend to hydrate more, leading to shorter retention times. In conclusion, the polarity of the grafted interface significantly influences the grafted PIPAAm brush hydration/dehydration characteristics and subsequently also the temperature-modulated separation of bioactive compounds in all-aqueous chromatography.
我们通过表面引发原子转移自由基聚合(ATRP)制备了具有不同温度响应疏水特性的聚(N-异丙基丙烯酰胺)(PIPAAm)刷接枝表面。这些温度响应表面通过色谱分析进行表征,使用改性硅胶珠作为水相流动相中的色谱固定相。在硅胶珠表面形成了包含ATRP引发剂和具有各种末端官能团的硅烷的混合硅烷自组装单分子层(SAMs)。然后,在25℃下于2-丙醇中使用CuCl/CuCl2/Me6TREN催化剂体系通过ATRP使IPAAm聚合16小时。甾体在由更多极性硅烷组分制成的所得PIPAAm刷上的色谱保留行为与在更多非极性硅烷界面上的不同。由于PIPAAm刷在非极性硅烷接枝表面上的脱水增强,甾体在PIPAAm混合非极性硅烷接枝界面上的保留时间明显长于在类似极性硅烷界面上的保留时间。与非极性PIPAAm接枝界面相比,极性硅烷PIPAAm接枝界面上的保留因子k'变化相对较大,这是因为接枝的PIPAAm刷在前一种表面上有更大的水合/脱水变化。从50℃到10℃施加的阶跃温度梯度表明,极性硅烷界面上的PIPAAm刷倾向于更多地水合,导致保留时间缩短。总之,接枝界面的极性显著影响接枝的PIPAAm刷的水合/脱水特性,进而也影响全水相色谱中生物活性化合物的温度调制分离。
ACS Appl Mater Interfaces. 2012-3-27
Colloids Surf B Biointerfaces. 2011-11-18
J Chromatogr A. 2009-12-1
J R Soc Interface. 2009-6-6