School of Biological Sciences, Seoul National University, San 56-1 Shinrim, Kwanak, Seoul 151-747, Republic of Korea.
Chemosphere. 2008 Nov;73(9):1442-7. doi: 10.1016/j.chemosphere.2008.07.074. Epub 2008 Sep 9.
Various substrate specificity groups of alkyl ether (AE)-degrading Actinobacteria coexisted in activated sewage sludge of a mixed wastewater treatment. There were substrate niche overlaps including diethyl ether between linear AE- and cyclic AE-degrading strains and phenetole between monoalkoxybenzene- and linear AE-degrading strains. Representatives of each group showed different substrate specificities and degradation pathways for the preferred substrates. Determining the rates of initial reactions and the initial metabolite(s) from whole cell biotransformation helped us to get information about the degradation pathways. Rhodococcus sp. strain DEE5311 and Rhodococcus rhodochrous strain 117 both were able to degrade anisole and phenetole through aromatic 2-monooxygenation to form 2-alkoxyphenols. In contrast, diethyl ether-oxidizing strain DEE5311 capable of degrading a broad range of linear AE, dibenzyl ether and monoalkoxybenzenes initially transformed anisole and phenetole to phenol via direct O-dealkylation. Compared to this, cyclic AE-degrading Rhodococcus sp. strain THF100 preferred tetrahydrofuran (265 ± 35 nmol min(-1)mg(-1) protein) to diethyl ether (<30), but it cannot oxidize bulkier AE than diethyl ether. Otherwise, 1,4-diethoxybenzene-degrading Rhodococcus sp. strain DEOB100 and Gordonia sp. strain DEOB200 transformed 1,3-/1,4-dialkoxybenzenes to 3-/4-alkoxyphenols by similar manners in the order of rates (nmol min(-1) mg(-1) protein): 1,4-diethoxybenzene (11.1 vs. 3.9)>1,4-dimethoxybenzene (1.6 vs. 2.6)>1,3-dimethoxybenzene (0.6 vs. 0.6). This study suggests that the AE-degrading Actinobacteria can orchestrate various substrate specificity responses to the degradation of various categories of AE pollutants in activated sludge communities.
各种烷基醚(AE)降解放线菌的基质特异性亚群共存于混合废水处理的活性污泥中。线性 AE 和环状 AE 降解菌之间存在二乙醚等基质生态位重叠,单烷氧基苯和线性 AE 降解菌之间存在苯乙醚等基质生态位重叠。每个亚群的代表具有不同的基质特异性和首选基质的降解途径。确定整个细胞生物转化的初始反应速率和初始代谢物有助于我们了解降解途径。红球菌 DE5311 株和红球菌 117 株都能够通过芳香 2-单加氧酶作用降解茴香醚和苯乙醚,形成 2-烷氧基苯酚。相反,能够降解广泛的线性 AE、二苄基醚和单烷氧基苯的二乙基醚氧化菌株 DEE5311 最初通过直接 O-脱烷基化将茴香醚和苯乙醚转化为苯酚。相比之下,环状 AE 降解的红球菌 THF100 株更喜欢四氢呋喃(265 ± 35 nmol min(-1)mg(-1) 蛋白)而不是二乙基醚(<30),但它不能氧化比二乙基醚更大的 AE。此外,1,4-二乙氧基苯降解的红球菌 DEOB100 株和戈登氏菌 DEOB200 株以相似的方式将 1,3-/1,4-二烷氧基苯转化为 3-/4-烷氧基苯酚,速率顺序(nmol min(-1) mg(-1) 蛋白):1,4-二乙氧基苯(11.1 vs. 3.9)>1,4-二甲氧基苯(1.6 vs. 2.6)>1,3-二甲氧基苯(0.6 vs. 0.6)。本研究表明,AE 降解放线菌可以协调各种基质特异性反应,以降解活性污泥群落中各种类别的 AE 污染物。