Suppr超能文献

基于粒子群优化算法的动态种群规模与自适应局部存档多目标优化

PSO-based multiobjective optimization with dynamic population size and adaptive local archives.

作者信息

Leong Wen-Fung, Yen Gary G

机构信息

School of Electrical and Computer Engineering,Oklahoma State University, Stillwater, OK 74078-5032, USA.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1270-93. doi: 10.1109/TSMCB.2008.925757.

Abstract

Recently, various multiobjective particle swarm optimization (MOPSO) algorithms have been developed to efficiently and effectively solve multiobjective optimization problems. However, the existing MOPSO designs generally adopt a notion to "estimate" a fixed population size sufficiently to explore the search space without incurring excessive computational complexity. To address the issue, this paper proposes the integration of a dynamic population strategy within the multiple-swarm MOPSO. The proposed algorithm is named dynamic population multiple-swarm MOPSO. An additional feature, adaptive local archives, is designed to improve the diversity within each swarm. Performance metrics and benchmark test functions are used to examine the performance of the proposed algorithm compared with that of five selected MOPSOs and two selected multiobjective evolutionary algorithms. In addition, the computational cost of the proposed algorithm is quantified and compared with that of the selected MOPSOs. The proposed algorithm shows competitive results with improved diversity and convergence and demands less computational cost.

摘要

最近,人们开发了各种多目标粒子群优化(MOPSO)算法,以高效且有效地解决多目标优化问题。然而,现有的MOPSO设计通常采用一种概念,即“估计”足够的固定种群规模,以在不产生过多计算复杂度的情况下探索搜索空间。为了解决这个问题,本文提出在多群体MOPSO中集成动态种群策略。所提出的算法被命名为动态种群多群体MOPSO。还设计了一个附加特性——自适应局部存档,以提高每个群体内的多样性。使用性能指标和基准测试函数来检验所提出算法与五个选定的MOPSO以及两个选定的多目标进化算法相比的性能。此外,对所提出算法的计算成本进行了量化,并与选定的MOPSO进行了比较。所提出的算法显示出具有竞争力的结果,具有改进的多样性和收敛性,并且所需的计算成本更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验