Suppr超能文献

基于多目标免疫优化算法的基因表达数据动态双聚类分析

Dynamic biclustering of microarray data by multi-objective immune optimization.

机构信息

School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

出版信息

BMC Genomics. 2011;12 Suppl 2(Suppl 2):S11. doi: 10.1186/1471-2164-12-S2-S11. Epub 2011 Jul 27.

Abstract

BACKGROUND

Newly microarray technologies yield large-scale datasets. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs) can be considered a new computational paradigm inspired by the immunological system of vertebrates and designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving biclustering problem.

RESULTS

Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two common and public datasets of gene expression profiles show that our approach can effectively find significant localized structures related to sets of genes that show consistent expression patterns across subsets of experimental conditions. The mined patterns present a significant biological relevance in terms of related biological processes, components and molecular functions in a species-independent manner.

CONCLUSIONS

The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves a good diversity and rapid convergence.

摘要

背景

新的微阵列技术产生了大规模数据集。微阵列数据集通常以 2D 矩阵表示,其中行代表基因,列代表实验条件。对这些数据集进行系统分析提供了越来越多的信息,这是在后基因组时代迫切需要的。双聚类是一种用于同时对数据集的行和列进行聚类的技术,可能有助于从这些数据集中提取更准确的信息。双聚类需要优化两个相互冲突的目标(残差和体积),以及一种能够进行多群体搜索的多目标人工免疫系统。作为一种启发式搜索技术,人工免疫系统(AIS)可以被视为一种新的计算范例,它受脊椎动物免疫系统的启发,并设计用于解决广泛的优化问题。在双聚类中,必须同时优化几个相互冲突的目标,因此多目标优化模型适合解决双聚类问题。

结果

基于动态群体,本文提出了一种新颖的动态多目标免疫优化双聚类(DMOIOB)算法,用于从微阵列数据中挖掘一致模式。在两个常见的公共基因表达谱数据集上的实验结果表明,我们的方法可以有效地发现与一组基因相关的显著局部结构,这些基因在实验条件的子集上表现出一致的表达模式。以物种独立的方式,挖掘出的模式在相关的生物学过程、组成部分和分子功能方面具有显著的生物学相关性。

结论

所提出的 DMOIOB 算法是分析大型微阵列数据集的有效工具。它实现了良好的多样性和快速收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd9/3194232/b00ed788fc12/1471-2164-12-S2-S11-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验