Xu Zeshui S, Chen Jian
Antai School of Economic and Management, Shanghai Jiaotong University, Shanghai 200052, China.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1356-70. doi: 10.1109/TSMCB.2008.925752.
Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.
具有方案偏好信息的群体决策是一个有趣且重要的研究课题,近年来受到了越来越多的关注。本文的目的是研究具有不同不确定偏好结构的多属性群体决策(MAGDM)问题。我们针对属性权重信息不完全且决策者对方案有偏好的MAGDM问题,开发了一些线性规划模型。所提供的偏好信息可以用以下三种不同的不确定偏好结构表示:1)区间效用值;2)区间模糊偏好关系;3)区间乘法偏好关系。我们首先基于决策矩阵和每种不同的不确定偏好结构建立一些线性规划模型,然后开发一些线性规划模型来整合决策者提供的主观不确定偏好信息的所有三种结构以及决策矩阵中描述的客观信息。此外,我们提出了一种简单直接的方法来对给定方案进行排序和选择。值得指出的是,所开发的模型还可用于处理三种不同的不确定偏好结构简化为传统结构的情况,即效用值、模糊偏好关系和乘法偏好关系。最后,我们通过一个实际例子详细说明了所开发方法的计算过程。