Park Jeong-Seon, Lee Seong-Whan
Department of Multimedia, Chonnam National University, Jeollanam-do, Korea.
IEEE Trans Image Process. 2008 Oct;17(10):1806-16. doi: 10.1109/TIP.2008.2001394.
This paper proposes a face hallucination method for the reconstruction of high-resolution facial images from single-frame, low-resolution facial images. The proposed method has been derived from example-based hallucination methods and morphable face models. First, we propose a recursive error back-projection method to compensate for residual errors, and a region-based reconstruction method to preserve characteristics of local facial regions. Then, we define an extended morphable face model, in which an extended face is composed of the interpolated high-resolution face from a given low-resolution face, and its original high-resolution equivalent. Then, the extended face is separated into an extended shape and an extended texture. We performed various hallucination experiments using the MPI, XM2VTS, and KF databases, compared the reconstruction errors, structural similarity index, and recognition rates, and showed the effects of face detection errors and shape estimation errors. The encouraging results demonstrate that the proposed methods can improve the performance of face recognition systems. Especially the proposed method can enhance the resolution of single-frame, low-resolution facial images.
本文提出了一种用于从单帧低分辨率面部图像重建高分辨率面部图像的人脸幻觉方法。所提出的方法源自基于示例的幻觉方法和可变形人脸模型。首先,我们提出一种递归误差反向投影方法来补偿残余误差,以及一种基于区域的重建方法来保留局部面部区域的特征。然后,我们定义一个扩展的可变形人脸模型,其中扩展人脸由给定低分辨率人脸的插值高分辨率人脸及其原始高分辨率对应物组成。然后,将扩展人脸分离为扩展形状和扩展纹理。我们使用MPI、XM2VTS和KF数据库进行了各种幻觉实验,比较了重建误差、结构相似性指数和识别率,并展示了人脸检测误差和形状估计误差的影响。令人鼓舞的结果表明,所提出的方法可以提高人脸识别系统的性能。特别是所提出的方法可以提高单帧低分辨率面部图像的分辨率。