Taylor Barry S, Barretina Jordi, Socci Nicholas D, Decarolis Penelope, Ladanyi Marc, Meyerson Matthew, Singer Samuel, Sander Chris
Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.
PLoS One. 2008 Sep 11;3(9):e3179. doi: 10.1371/journal.pone.0003179.
Understanding the molecular basis of cancer requires characterization of its genetic defects. DNA microarray technologies can provide detailed raw data about chromosomal aberrations in tumor samples. Computational analysis is needed (1) to deduce from raw array data actual amplification or deletion events for chromosomal fragments and (2) to distinguish causal chromosomal alterations from functionally neutral ones. We present a comprehensive computational approach, RAE, designed to robustly map chromosomal alterations in tumor samples and assess their functional importance in cancer. To demonstrate the methodology, we experimentally profile copy number changes in a clinically aggressive subtype of soft-tissue sarcoma, pleomorphic liposarcoma, and computationally derive a portrait of candidate oncogenic alterations and their target genes. Many affected genes are known to be involved in sarcomagenesis; others are novel, including mediators of adipocyte differentiation, and may include valuable therapeutic targets. Taken together, we present a statistically robust methodology applicable to high-resolution genomic data to assess the extent and function of copy-number alterations in cancer.
了解癌症的分子基础需要对其基因缺陷进行表征。DNA微阵列技术可以提供有关肿瘤样本中染色体畸变的详细原始数据。需要进行计算分析,一是从原始阵列数据中推断染色体片段的实际扩增或缺失事件,二是将因果性染色体改变与功能中性的改变区分开来。我们提出了一种全面的计算方法RAE,旨在稳健地绘制肿瘤样本中的染色体改变图谱,并评估它们在癌症中的功能重要性。为了演示该方法,我们通过实验分析了软组织肉瘤的一种临床侵袭性亚型——多形性脂肪肉瘤中的拷贝数变化,并通过计算得出候选致癌改变及其靶基因的概况。许多受影响的基因已知参与肉瘤发生;其他一些则是新发现的,包括脂肪细胞分化的调节因子,可能还包括有价值的治疗靶点。总之,我们提出了一种适用于高分辨率基因组数据的统计稳健方法,以评估癌症中拷贝数改变的程度和功能。