Singh Gurpreet, Senapati Sanjib
Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India.
Biochemistry. 2008 Oct 7;47(40):10657-64. doi: 10.1021/bi8006725. Epub 2008 Sep 12.
The necessity of understanding the detailed mechanism of flap dynamics in designing HIV-1 protease inhibitors is immense. Crystal structures have provided us with a static overview of various conformations of the enzyme, but the existence of strong interplay among various conformations came to the fore only after dynamics studies. Here we elucidate the mechanistic aspects of HIV-1 protease flap closing upon binding inhibitors using all-atom molecular dynamics simulations. The unrestrained simulations reproduced not only the correct inhibitor-bound protease closed structures but also the structural water molecule which is seen in all protease-ligand X-ray structures. The study demonstrates that the structural water plays a critical role in flap closing dynamics by destabilizing the hydrophobic clusters and subsequently by mediating the flap-ligand interactions. Our results corroborate well with prior simulation and experimental findings and, at the same time, provide a molecular level description of the HIV-1 protease flap closing mechanism which can be crucial in the understanding of drug-receptor interactions.
在设计HIV-1蛋白酶抑制剂时,深入了解蛋白酶活性位点动态变化的详细机制至关重要。晶体结构为我们提供了该酶各种构象的静态概况,但只有在进行动力学研究之后,各种构象之间强烈的相互作用才得以显现。在这里,我们使用全原子分子动力学模拟阐明了HIV-1蛋白酶在结合抑制剂时活性位点关闭的机制。无约束模拟不仅重现了正确的抑制剂结合蛋白酶的关闭结构,还重现了所有蛋白酶-配体X射线结构中都可见的结构水分子。该研究表明,结构水分子通过破坏疏水簇的稳定性并随后介导活性位点与配体的相互作用,在活性位点关闭动力学中起关键作用。我们的结果与先前的模拟和实验结果高度吻合,同时提供了HIV-1蛋白酶活性位点关闭机制的分子水平描述,这对于理解药物-受体相互作用可能至关重要。