Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack F M G
Laboratory of Analytical Chemistry and Applied Ecochemistry Ghent University, Faculty of Bioscience Engineering, Coupure Links 653, Ghent, Belgium.
Sci Total Environ. 2009 Jun 15;407(13):3972-85. doi: 10.1016/j.scitotenv.2008.07.025. Epub 2008 Sep 10.
This paper reviews the factors affecting trace metal behaviour in estuarine and riverine floodplain soils and sediments. Spatial occurrence of processes affecting metal mobility and availability in floodplains are largely determined by the topography. At the oxic-anoxic interface and in the anoxic layers of floodplain soils, especially redox-sensitive processes occur, which mainly result in the inclusion of metals in precipitates or the dissolution of metal-containing precipitates. Kinetics of these processes are of great importance for these soils as the location of the oxic-anoxic interface is subject to change due to fluctuating water table levels. Other important processes and factors affecting metal mobility in floodplain soils are adsorption/desorption processes, salinity, the presence of organic matter, sulphur and carbonates, pH and plant growth. Many authors report highly significant correlations between cation exchange capacity, clay or organic matter contents and metal contents in floodplain soils. Iron and manganese (hydr)oxides were found to be the main carriers for Cd, Zn and Ni under oxic conditions, whereas the organic fraction was most important for Cu. The mobility and availability of metals in a floodplain soil can be significantly reduced by the formation of metal sulphide precipitates under anoxic conditions. Ascending salinity in the flood water promotes metal desorption from the floodplain soil in the absence of sulphides, hence increases total metal concentrations in the water column. The net effect of the presence of organic matter can either be a decrease or an increase in metal mobility, whereas the presence of carbonates in calcareous floodplain soils or sediments constitutes an effective buffer against a pH decrease. Moreover, carbonates may also directly precipitate metals. Plants can affect the metal mobility in floodplain soils by oxidising their rhizosphere, taking up metals, excreting exudates and stimulating the activity of microbial symbionts in the rhizosphere.
本文综述了影响河口和河漫滩土壤及沉积物中痕量金属行为的因素。影响河漫滩金属迁移性和有效性的过程在空间上的发生情况在很大程度上由地形决定。在河漫滩土壤的好氧-厌氧界面以及厌氧层中,特别是发生氧化还原敏感过程,这主要导致金属被包含在沉淀物中或含金属沉淀物的溶解。由于地下水位波动,好氧-厌氧界面的位置会发生变化,因此这些过程的动力学对这些土壤非常重要。影响河漫滩土壤中金属迁移性的其他重要过程和因素包括吸附/解吸过程、盐度、有机物、硫和碳酸盐的存在、pH值以及植物生长。许多作者报告说,河漫滩土壤中的阳离子交换容量、粘土或有机物含量与金属含量之间存在高度显著的相关性。在好氧条件下,铁和锰的(氢)氧化物被发现是镉、锌和镍的主要载体,而有机部分对铜最为重要。在厌氧条件下,金属硫化物沉淀物的形成可显著降低河漫滩土壤中金属的迁移性和有效性。在没有硫化物的情况下,洪水盐度的上升会促进金属从河漫滩土壤中解吸,从而增加水柱中的总金属浓度。有机物存在的净效应可能是金属迁移性降低或增加,而钙质河漫滩土壤或沉积物中碳酸盐的存在构成了防止pH值下降的有效缓冲。此外,碳酸盐也可能直接沉淀金属。植物可以通过氧化其根际、吸收金属、分泌渗出物以及刺激根际微生物共生体的活性来影响河漫滩土壤中的金属迁移性。