Suppr超能文献

证明紫硫细菌可以利用黄铁矿作为电子和硫源进行自养生长。

Evidence for autotrophic growth of purple sulfur bacteria using pyrite as electron and sulfur source.

机构信息

Environmental Science and Engineering Program, the University of Texas at El Paso, El Paso, Texas, USA.

Department of Mathematical Sciences, the University of Texas at El Paso, El Paso, Texas, USA.

出版信息

Appl Environ Microbiol. 2024 Jul 24;90(7):e0086324. doi: 10.1128/aem.00863-24. Epub 2024 Jun 20.

Abstract

UNLABELLED

Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures ("py"') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various - and -type cytochromes was observed in "py," pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis.

IMPORTANCE

Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet's history.

摘要

未加说明

紫色硫细菌(PSB)能够通过氧化还原态硫化合物进行厌氧光合作用,被认为是一系列缺氧环境中硫循环的关键驱动因素。在这项研究中,我们表明(一种 PSB 物种)能够利用黄铁矿作为电子和硫源进行自养生长。比较生长曲线、底物表征和转录组测序数据为细菌利用黄铁矿和自养生长的分子机制提供了有价值的见解。具体来说,用黄铁矿支持的细胞培养物(“py”)表现出稳健但明显较慢的生长速度和与添加了硫化钠的阳性对照不同的模式。在“py”中观察到编码各种-和-type 细胞色素的基因的上调高达约 200 倍,这表明这些分子在从黄铁矿中摄取和传递电子到细胞质代谢物方面具有高度相关性。相反,与 LH 和 RC 复合物成分相关的基因的广泛下调表明,电子源可能直接控制细菌细胞的光合作用活性。就硫代谢而言,编码周质或膜结合蛋白(例如 FccAB 和 SoxYZ)的基因被大量上调,而编码细胞质蛋白(例如 Dsr 和 Apr 组)的基因则被广泛抑制。其他值得注意的差异表达基因与鞭毛/菌毛/纤毛(+)、金属外排(+)、亚铁enterochelin(-)和[NiFe]氢化酶(+)有关。对生物反应黄铁矿的表征表明存在聚合硫。这些结果首次将 PSB 和过渡金属硫化物化学的相互作用置于聚光灯下,有可能推进多个领域的发展,包括金属和硫生物地球化学、细菌细胞外电子转移和人工光合作用。

意义

微生物对固相底物的利用是环境微生物学的一个重要研究领域,为微生物代谢过程和适应性提供了有价值的见解。该领域的最新进展极大地加深了我们对与这些情况相关的微生物生理学的了解,并推动了生物合成和能量产生方面的创新。此外,对微生物与固相底物之间相互作用的研究将微生物活性直接与周围的矿物环境联系起来,从而增强了我们对相关生物地球化学循环的理解。我们的研究通过首次证明紫色硫细菌能够利用不溶性黄铁矿(FeS2)作为电子和硫源进行自养生长,在该领域迈出了重要的一步。呈现的比较生长曲线、底物表征和转录组测序数据阐明了电子供体类型、光合作用反应中心活性和这些能够进行厌氧光合作用的生物体中潜在的细胞外电子转移之间的关系。此外,我们研究的结果可能为早期地球生物地球化学进化提供新的见解,为理解塑造我们星球历史的环境条件和微生物过程提供有价值的限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验