Krilov Lada, Nguyen Amy, Miyazaki Teruo, Unson Cecilia G, Bouscarel Bernard
Gastroenterology Research Laboratory. Digestive Diseases Center, Dept. of Biochemistry and Molecular Biology, George Washington Univ., 2300 Eye St. NW, Washington, DC 20037, USA.
Am J Physiol Cell Physiol. 2008 Nov;295(5):C1230-7. doi: 10.1152/ajpcell.00240.2008. Epub 2008 Sep 11.
Glucagon receptor (GR) activity and expression are altered in several diseases, including Type 2 diabetes. Previously, we investigated the mechanism of GR desensitization and internalization. The present study focused on the fate of internalized GR. Using both hamster hepatocytes and human embryonic kidney (HEK)-293 cells, we showed that internalized GR recycled to the plasma membrane within 30-60 min following stimulation of the cells with 100 nM glucagon. In HEK-293 cells and during recycling, GR colocalized with Rab4, Rab11, beta-arrestin1, beta-arrestin2, and actin filaments, in the cytosolic and/or perinuclear domains. Glucagon treatment triggered redistribution of actin filaments from the plasma membrane to the cytosol. GR coimmunoprecipitated with beta-actin in both hepatocytes and HEK-293 cells. Downregulation of beta-arrestin1 and beta-arrestin2 or disruption of the cytoskeleton inhibited recycling, but not internalization of GR. Deletion of the GR carboxyl-terminal 70 amino acids abolished internalization of GR in response to glucagon while deletion of the last 40 amino acids only did not affect GR internalization and recycling. After exposure of the cells to either high concentrations or prolonged duration of glucagon, GR colocalized with lysosomes. GR degradation was inhibited by lysosomal, but not proteosomal, inhibitors. In conclusion, GR recycles through Rab4- and Rab11- positive vesicles. The actin cytoskeleton, beta-arrestin1, beta-arrestin2, and the receptor's carboxyl terminus are involved in recycling. Prolonged stimulation with glucagon targets GR for degradation in lysosomes. Therefore, the present study provides a better understanding of the GR recycling mechanism, which could become useful in the treatment of certain diseases, including diabetes.
胰高血糖素受体(GR)的活性和表达在包括2型糖尿病在内的多种疾病中会发生改变。此前,我们研究了GR脱敏和内化的机制。本研究聚焦于内化GR的去向。利用仓鼠肝细胞和人胚肾(HEK)-293细胞,我们发现,在用100 nM胰高血糖素刺激细胞后,内化的GR在30 - 60分钟内循环回到质膜。在HEK-293细胞及循环过程中,GR在胞质和/或核周区域与Rab4、Rab11、β-抑制蛋白1、β-抑制蛋白2和肌动蛋白丝共定位。胰高血糖素处理引发肌动蛋白丝从质膜向胞质的重新分布。在肝细胞和HEK-293细胞中,GR都能与β-肌动蛋白进行共免疫沉淀。β-抑制蛋白1和β-抑制蛋白2的下调或细胞骨架的破坏会抑制GR的循环,但不影响其内化。GR羧基末端70个氨基酸的缺失消除了GR对胰高血糖素的内化反应,而仅缺失最后40个氨基酸并不影响GR的内化和循环。在用高浓度或长时间的胰高血糖素处理细胞后,GR与溶酶体共定位。溶酶体抑制剂可抑制GR的降解,但蛋白酶体抑制剂则不能。总之,GR通过Rab4和Rab11阳性囊泡进行循环。肌动蛋白细胞骨架、β-抑制蛋白1、β-抑制蛋白2以及受体的羧基末端参与了循环过程。胰高血糖素的长时间刺激会使GR靶向溶酶体进行降解。因此,本研究有助于更好地理解GR的循环机制,这可能对包括糖尿病在内的某些疾病的治疗具有重要意义。