Zhang Hao, Xiong Jun, Luo Jie, Qu Anlian
Institute of Biophysics and Biochemistry, College of Life Science and Technology, College of Electrical and Electronics Engineering, Huazhong University of Science and Technology, PR China.
J Neurosci Methods. 2009 Jan 30;176(2):246-53. doi: 10.1016/j.jneumeth.2008.08.022. Epub 2008 Aug 26.
Accurate Cm measurements rely on accurate determination of specific parameters of a patch-clamp amplifier (PCA). Hardware-related parameters, such as the resistance Rf and the stray capacitance Cf of the feedback resistor, the input capacitance Ci, the injection capacitance Cj, and the extra capacitances introduced by the BNC connector, are of significance in the sense of obtaining absolute estimates of cell parameters. In the present paper, a frequency-domain method, or the f-method for simplicity, is put forward to experimentally determine the actual values of basic circuit elements for our self-developed PCA. The f-method makes use of sine waves and amplitude/phase measurements instead of the square-wave responses to determine the above parameters of a PCA, and thereby calibrates the PAC for capacitance measurements. Experimental results prove that the f-method is excellent in determining hardware-related parameters, with 3-5% error of the impedance of the "10 MOmega setting", and about 2% error of the impedance of the "model cell" of the model circuit for our PCA. The f-method enables us not only to picture components of fast capacitances, but also to guarantee complete fast capacitance compensation; it may be applicable for other PCAs.
准确的膜电容(Cm)测量依赖于膜片钳放大器(PCA)特定参数的准确测定。与硬件相关的参数,如反馈电阻的电阻Rf和杂散电容Cf、输入电容Ci、注入电容Cj以及BNC连接器引入的额外电容,对于获得细胞参数的绝对估计具有重要意义。在本文中,提出了一种频域方法,简称为f方法,用于通过实验确定我们自行研发的PCA基本电路元件的实际值。f方法利用正弦波和幅度/相位测量,而不是方波响应来确定PCA的上述参数,从而校准用于电容测量的PCA。实验结果证明,f方法在确定与硬件相关的参数方面表现出色,对于我们的PCA,“10 MΩ设置”的阻抗误差为3 - 5%,模型电路“模型细胞”的阻抗误差约为2%。f方法不仅使我们能够描绘快速电容的组成部分,还能确保完全的快速电容补偿;它可能适用于其他PCA。