Suppr超能文献

使用贝叶斯网络对微阵列研究结果通过逆转录聚合酶链反应进行概率建模并提高验证的可能性。

Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findings by RT-PCR.

作者信息

English Sangeeta B, Shih Shou-Ching, Ramoni Marco F, Smith Lois E, Butte Atul J

机构信息

Stanford Center for Biomedical Informatics Research (BMIR), Stanford University School of Medicine, 251 Campus Drive, Stanford, CA 94305, USA.

出版信息

J Biomed Inform. 2009 Apr;42(2):287-95. doi: 10.1016/j.jbi.2008.08.009. Epub 2008 Aug 26.

Abstract

Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy; there is still varied success in downstream biological validation. We report a method that increases the likelihood of successfully validating microarray findings using real time RT-PCR, including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation.

摘要

尽管全基因组技术,如微阵列,被广泛应用,但这些方法得到的数据被认为存在噪声;在下游生物学验证中仍有不同程度的成功。我们报告了一种方法,该方法使用实时逆转录聚合酶链反应(real time RT-PCR)提高成功验证微阵列结果的可能性,包括低表达水平和差异较小的基因。我们使用贝叶斯网络根据一组初始选定基因验证的成功与失败来识别最相关的噪声源,然后基于消除这些噪声源来改进我们后续用于验证的基因选择。该网络展示了实验中显著的噪声源,并对每个基因的验证可能性进行评分。我们展示了该方法如何能显著提高验证成功率。总之,在本研究中,我们成功添加了一个新的自动化步骤来确定决定下游生物学验证成功或失败的噪声的促成来源。

相似文献

1
Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findings by RT-PCR.
J Biomed Inform. 2009 Apr;42(2):287-95. doi: 10.1016/j.jbi.2008.08.009. Epub 2008 Aug 26.
5
Microarray data analysis: a practical approach for selecting differentially expressed genes.
Genome Biol. 2001;2(12):PREPRINT0009. doi: 10.1186/gb-2001-2-12-preprint0009. Epub 2001 Nov 16.
6
Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development.
Exp Eye Res. 2017 Feb;155:99-106. doi: 10.1016/j.exer.2017.01.004. Epub 2017 Jan 27.
7
9
Bayesian models for pooling microarray studies with multiple sources of replications.
BMC Bioinformatics. 2006 May 5;7:247. doi: 10.1186/1471-2105-7-247.
10
Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2105-9-S1-S9.

引用本文的文献

1
2
Marco Ramoni: an appreciation of academic achievement.
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):367-9. doi: 10.1136/amiajnl-2011-000218. Epub 2011 Apr 7.

本文引用的文献

1
A module map showing conditional activity of expression modules in cancer.
Nat Genet. 2004 Oct;36(10):1090-8. doi: 10.1038/ng1434. Epub 2004 Sep 26.
4
Increased measurement accuracy for sequence-verified microarray probes.
Physiol Genomics. 2004 Aug 11;18(3):308-15. doi: 10.1152/physiolgenomics.00066.2004.
6
A novel strategy for microarray quality control using Bayesian networks.
Bioinformatics. 2003 Nov 1;19(16):2031-8. doi: 10.1093/bioinformatics/btg275.
7
Evaluation of gene expression measurements from commercial microarray platforms.
Nucleic Acids Res. 2003 Oct 1;31(19):5676-84. doi: 10.1093/nar/gkg763.
8
A model-based analysis of microarray experimental error and normalisation.
Nucleic Acids Res. 2003 Aug 15;31(16):e96. doi: 10.1093/nar/gng097.
10
Reproducibility of gene expression across generations of Affymetrix microarrays.
BMC Bioinformatics. 2003 Jun 25;4:27. doi: 10.1186/1471-2105-4-27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验