Suppr超能文献

酸敏感离子通道1中的潜在阳离子和氢离子结合位点。

Potential cation and H+ binding sites in acid sensing ion channel-1.

作者信息

Shaikh Saher Afshan, Tajkhorshid Emad

机构信息

Department of Biochemistry, Center for Biophysics and Computational Biology, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Biophys J. 2008 Dec;95(11):5153-64. doi: 10.1529/biophysj.108.141606. Epub 2008 Sep 12.

Abstract

Acid sensing ion channels (ASICs) are cation-selective membrane channels activated by H(+) binding upon decrease in extracellular pH. It is known that Ca(2+) plays an important modulatory role in ASIC gating, competing with the ligand (H(+)) for its binding site(s). However, the H(+) or Ca(2+) binding sites involved in gating and the gating mechanism are not fully known. We carried out a computational study to investigate potential cation and H(+) binding sites for ASIC1 via all-atom molecular dynamics simulations on five systems. The systems were designed to test the candidacy of some acid sensing residues proposed from experiment and to determine yet unknown ligand binding sites. The ion binding patterns reveal sites of cation (Na(+) and Ca(2+)) localization where they may compete with protons and influence channel gating. The highest incidence of Ca(2+) and Na(+) binding is observed at a highly acidic pocket on the protein surface. Also, Na(+) ions fill in an inner chamber that contains a ring of acidic residues and that is near the channel entrance; this site could possibly be a temporary reservoir involved in ion permeation. Some acidic residues were observed to orient and move significantly close together to bind Ca(2+), indicating the structural consequences of Ca(2+) release from these sites. Local structural changes in the protein due to cation binding or ligand binding (protonation) are examined at the binding sites and discussed. This study provides structural and dynamic details to test hypotheses for the role of Ca(2+) and Na(+) ions in the channel gating mechanism.

摘要

酸敏感离子通道(ASICs)是阳离子选择性膜通道,在细胞外pH值降低时,通过与H⁺结合而被激活。已知Ca²⁺在ASIC门控中起重要的调节作用,它与配体(H⁺)竞争其结合位点。然而,参与门控的H⁺或Ca²⁺结合位点以及门控机制尚未完全明确。我们通过对五个系统进行全原子分子动力学模拟,开展了一项计算研究,以探究ASIC1潜在的阳离子和H⁺结合位点。这些系统旨在测试实验中提出的一些酸敏感残基的候选情况,并确定未知的配体结合位点。离子结合模式揭示了阳离子(Na⁺和Ca²⁺)定位的位点,在这些位点它们可能与质子竞争并影响通道门控。在蛋白质表面的一个高酸性口袋中观察到Ca²⁺和Na⁺结合的发生率最高。此外,Na⁺离子填充在一个内部腔室中,该腔室包含一圈酸性残基且靠近通道入口;这个位点可能是参与离子渗透的临时储存库。观察到一些酸性残基显著地定向并相互靠近以结合Ca²⁺,这表明从这些位点释放Ca²⁺会产生结构后果。在结合位点处研究并讨论了由于阳离子结合或配体结合(质子化)导致的蛋白质局部结构变化。这项研究提供了结构和动力学细节,以检验关于Ca²⁺和Na⁺离子在通道门控机制中作用的假设。

相似文献

2
Proton-binding sites of acid-sensing ion channel 1.酸敏感离子通道 1 的质子结合位点。
PLoS One. 2011 Feb 14;6(2):e16920. doi: 10.1371/journal.pone.0016920.

引用本文的文献

3
Computational Tools for Interpreting Ion Channel pH-Dependence.用于解释离子通道pH依赖性的计算工具
PLoS One. 2015 Apr 27;10(4):e0125293. doi: 10.1371/journal.pone.0125293. eCollection 2015.
7
Modeling and simulation of ion channels.离子通道的建模与模拟
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
8
Structure and activity of the acid-sensing ion channels.酸敏离子通道的结构与活性。
Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C699-710. doi: 10.1152/ajpcell.00188.2012. Epub 2012 Jul 25.
9
ASIC3 channels in multimodal sensory perception.ASIC3 通道在多模态感觉感知中的作用。
ACS Chem Neurosci. 2011 Jan 19;2(1):26-37. doi: 10.1021/cn100094b. Epub 2010 Nov 12.

本文引用的文献

8
Scalable molecular dynamics with NAMD.使用 NAMD 的可扩展分子动力学
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验