Suppr超能文献

每日血浆葡萄糖节律的昼夜节律控制:γ-氨基丁酸与谷氨酸的相互作用。

Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.

作者信息

Kalsbeek Andries, Foppen Ewout, Schalij Ingrid, Van Heijningen Caroline, van der Vliet Jan, Fliers Eric, Buijs Ruud M

机构信息

Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.

出版信息

PLoS One. 2008 Sep 15;3(9):e3194. doi: 10.1371/journal.pone.0003194.

Abstract

The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target area of biological clock output and harbors the pre-autonomic neurons that control peripheral sympathetic and parasympathetic activity. Using local administration of GABA and glutamate receptor (ant)agonists in the PVN at different times of the light/dark-cycle we investigated whether daily changes in the activity of autonomic nervous system contribute to the control of plasma glucose and plasma insulin concentrations. Activation of neuronal activity in the PVN of non-feeding animals, either by administering a glutamatergic agonist or a GABAergic antagonist, induced hyperglycemia. The effect of the GABA-antagonist was time dependent, causing increased plasma glucose concentrations only when administered during the light period. The absence of a hyperglycemic effect of the GABA-antagonist in SCN-ablated animals provided further evidence for a daily change in GABAergic input from the SCN to the PVN. On the other hand, feeding-induced plasma glucose and insulin responses were suppressed by inhibition of PVN neuronal activity only during the dark period. These results indicate that the pre-autonomic neurons in the PVN are controlled by an interplay of inhibitory and excitatory inputs. Liver-dedicated sympathetic pre-autonomic neurons (responsible for hepatic glucose production) and pancreas-dedicated pre-autonomic parasympathetic neurons (responsible for insulin release) are controlled by inhibitory GABAergic contacts that are mainly active during the light period. Both sympathetic and parasympathetic pre-autonomic PVN neurons also receive excitatory inputs, either from the biological clock (sympathetic pre-autonomic neurons) or from non-clock areas (para-sympathetic pre-autonomic neurons), but the timing information is mainly provided by the GABAergic outputs of the biological clock.

摘要

哺乳动物生物钟位于下丘脑视交叉上核(SCN),通过神经和内分泌输出将其时间结构强加于生物体。为了进一步研究SCN对自主神经系统的控制,我们在本研究中聚焦于血浆葡萄糖浓度的每日节律。下丘脑室旁核(PVN)是生物钟输出的一个重要靶区,含有控制外周交感和副交感活动的自主神经前体神经元。通过在明暗周期的不同时间在PVN局部施用GABA和谷氨酸受体(抗)激动剂,我们研究了自主神经系统活动的每日变化是否有助于控制血浆葡萄糖和血浆胰岛素浓度。通过施用谷氨酸能激动剂或GABA能拮抗剂激活非进食动物PVN中的神经元活动会诱发高血糖。GABA拮抗剂的作用是时间依赖性的,仅在光照期施用时才会导致血浆葡萄糖浓度升高。在SCN切除的动物中GABA拮抗剂没有高血糖作用,这为从SCN到PVN的GABA能输入的每日变化提供了进一步的证据。另一方面,仅在黑暗期抑制PVN神经元活动会抑制进食诱导的血浆葡萄糖和胰岛素反应。这些结果表明,PVN中的自主神经前体神经元受抑制性和兴奋性输入的相互作用控制。肝脏特异性交感自主神经前体神经元(负责肝脏葡萄糖生成)和胰腺特异性自主神经副交感神经元(负责胰岛素释放)受主要在光照期活跃的抑制性GABA能接触控制。交感和副交感自主神经PVN神经元也接受兴奋性输入,要么来自生物钟(交感自主神经前体神经元),要么来自非生物钟区域(副交感自主神经前体神经元),但时间信息主要由生物钟的GABA能输出提供。

相似文献

1
Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate.
PLoS One. 2008 Sep 15;3(9):e3194. doi: 10.1371/journal.pone.0003194.
4
A network of (autonomic) clock outputs.
Chronobiol Int. 2006;23(1-2):201-15. doi: 10.1080/07420520500464528.
6
8
A network of (autonomic) clock outputs.
Chronobiol Int. 2006;23(3):521-35. doi: 10.1080/07420520600651073.
9
Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior.
Am J Physiol Endocrinol Metab. 2018 Oct 1;315(4):E478-E488. doi: 10.1152/ajpendo.00338.2016. Epub 2017 Feb 7.
10
GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm.
J Neurochem. 2021 Apr;157(1):31-41. doi: 10.1111/jnc.15012. Epub 2020 Jul 3.

引用本文的文献

1
I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms.
FEBS J. 2025 Mar;292(6):1454-1479. doi: 10.1111/febs.17400. Epub 2025 Jan 22.
2
Circadian clock communication during homeostasis and ageing.
Nat Rev Mol Cell Biol. 2025 Apr;26(4):314-331. doi: 10.1038/s41580-024-00802-3. Epub 2025 Jan 3.
3
Misalignment of Circadian Rhythms in Diet-Induced Obesity.
Adv Exp Med Biol. 2024;1460:27-71. doi: 10.1007/978-3-031-63657-8_2.
4
A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion.
Nat Commun. 2024 Aug 13;15(1):6941. doi: 10.1038/s41467-024-51076-4.
6
GeTeSEPdb: A comprehensive database and online tool for the identification and analysis of gene profiles with temporal-specific expression patterns.
Comput Struct Biotechnol J. 2024 Jun 5;23:2488-2496. doi: 10.1016/j.csbj.2024.06.003. eCollection 2024 Dec.
7
Hippocampus Insulin Receptors Regulate Episodic and Spatial Memory Through Excitatory/Inhibitory Balance.
ASN Neuro. 2023 Jan-Dec;15:17590914231206657. doi: 10.1177/17590914231206657.
8
Circadian clock and temporal meal pattern.
Med Rev (2021). 2022 Sep 5;3(1):85-101. doi: 10.1515/mr-2022-0021. eCollection 2023 Feb.
10
Dopamine systems and biological rhythms: Let's get a move on.
Front Integr Neurosci. 2022 Jul 27;16:957193. doi: 10.3389/fnint.2022.957193. eCollection 2022.

本文引用的文献

2
Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species.
Eur J Neurosci. 2008 Feb;27(4):818-27. doi: 10.1111/j.1460-9568.2008.06057.x. Epub 2008 Feb 13.
3
Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver.
Endocrinology. 2008 Apr;149(4):1914-25. doi: 10.1210/en.2007-0816. Epub 2007 Dec 27.
4
Circadian clocks: regulators of endocrine and metabolic rhythms.
J Endocrinol. 2007 Nov;195(2):187-98. doi: 10.1677/JOE-07-0378.
6
Vagal regulation of respiratory clocks in mice.
J Neurosci. 2007 Apr 18;27(16):4359-65. doi: 10.1523/JNEUROSCI.4131-06.2007.
7
SCN organization reconsidered.
J Biol Rhythms. 2007 Feb;22(1):3-13. doi: 10.1177/0748730406296749.
8
The hypothalamic clock and its control of glucose homeostasis.
Prog Brain Res. 2006;153:283-307. doi: 10.1016/S0079-6123(06)53017-1.
9
Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms.
Prog Brain Res. 2006;153:243-52. doi: 10.1016/S0079-6123(06)53014-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验