Suppr超能文献

在包括药物治疗管理服务的处方福利计划的基于选择的联合分析中,用于效用估计的分层贝叶斯方法的试点研究。

Pilot study of a hierarchical Bayes method for utility estimation in a choice-based conjoint analysis of prescription benefit plans including medication therapy management services.

作者信息

Wellman Gregory S, Vidican Carla

机构信息

Ferris State University, College of Pharmacy, 220 Ferris Drive, Big Rapids, MI 49307, USA.

出版信息

Res Social Adm Pharm. 2008 Sep;4(3):218-30. doi: 10.1016/j.sapharm.2007.08.002.

Abstract

BACKGROUND

Consumers face an array of multiattribute prescription benefit insurance programs that include different access points (retail, supermarket, Internet, etc) and levels of pharmacist interaction (including medication therapy management services [MTMSs]). Because of this, there is a need for more sophisticated information to drive prescription benefit plan design.

OBJECTIVES

A pilot study to determine if choice-based conjoint (CBC) analysis with hierarchical Bayes (HB) estimation for individual level part-worths could provide a stable model for attribute preferences for prescription benefit insurance; to pilot test the addition of MTMSs to a prescription benefit management model; and to pilot and compare logit-based utility estimates to HB estimations in a conjoint market simulator.

METHODS

A mail-based survey was conducted using a random sample of 1500 residents of the United States. A CBC analysis instrument was developed to provide a single-stated choice from a selection of different prescription benefit plans. Choice tasks were varied based on the attributes: co-payment, pharmacy access, formulary, level of pharmacist interaction including MTMSs and monthly premium. Analysis included logit-based and HB estimation for utilities, and preference share market simulation testing.

RESULTS

The utility estimations from HB analysis were consistent with those seen in the logit-based analysis. A goodness of fit of 83% (root likelihood) was achieved in the HB utility estimations with only 4 choice tasks per respondents and the inclusion of MTM-like services. There was convergence on preference shares from the market simulation between the 2 estimation methods.

CONCLUSIONS

The use of CBC analysis with HB estimation provided utilities similar to those estimated using aggregated logit-based methods, with the added benefit of respondent specific part-worth scores for each attribute level. A larger sample, changes in the instrument design, more panels (tasks) per respondent, and selection of conjoint methods may allow for more predictive information from market simulators.

摘要

背景

消费者面临一系列多属性的处方药福利保险计划,这些计划包括不同的获取途径(零售、超市、互联网等)以及不同水平的药剂师互动(包括药物治疗管理服务[MTMS])。因此,需要更复杂的信息来推动处方药福利计划的设计。

目的

进行一项试点研究,以确定使用具有层次贝叶斯(HB)估计个体水平部分价值的基于选择的联合分析(CBC)是否能为处方药福利保险的属性偏好提供一个稳定的模型;对在处方药福利管理模型中增加MTMS进行试点测试;并在联合市场模拟器中对基于logit的效用估计与HB估计进行试点和比较。

方法

对1500名美国居民的随机样本进行了基于邮件的调查。开发了一种CBC分析工具,以便从不同的处方药福利计划中进行单一陈述选择。选择任务根据以下属性而变化:共付额、药房获取途径、药品目录、包括MTMS在内的药剂师互动水平以及月保费。分析包括基于logit和HB的效用估计,以及偏好份额市场模拟测试。

结果

HB分析的效用估计与基于logit的分析结果一致。在HB效用估计中,每个受访者仅进行4个选择任务并纳入类似MTM的服务时,拟合优度达到了83%(根似然)。两种估计方法在市场模拟的偏好份额上趋于一致。

结论

使用带有HB估计的CBC分析所提供的效用与使用基于logit的汇总方法估计的效用相似,其额外好处是为每个属性水平提供受访者特定的部分价值分数。更大的样本、工具设计的改变、每个受访者更多的面板(任务)以及联合方法的选择可能会从市场模拟器中获得更多预测信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验