Tong Carl W, Stelzer Julian E, Greaser Marion L, Powers Patricia A, Moss Richard L
Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
Circ Res. 2008 Oct 24;103(9):974-82. doi: 10.1161/CIRCRESAHA.108.177683. Epub 2008 Sep 18.
Normal cardiac function requires dynamic modulation of contraction. beta1-adrenergic-induced protein kinase (PK)A phosphorylation of cardiac myosin binding protein (cMyBP)-C may regulate crossbridge kinetics to modulate contraction. We tested this idea with mechanical measurements and echocardiography in a mouse model lacking 3 PKA sites on cMyBP-C, ie, cMyBP-C(t3SA). We developed the model by transgenic expression of mutant cMyBP-C with Ser-to-Ala mutations on the cMyBP-C knockout background. Western blots, immunofluorescence, and in vitro phosphorylation combined to show that non-PKA-phosphorylatable cMyBP-C expressed at 74% compared to normal wild-type (WT) and was correctly positioned in the sarcomeres. Similar expression of WT cMyBP-C at 72% served as control, ie, cMyBP-C(tWT). Skinned myocardium responded to stretch with an immediate increase in force, followed by a transient relaxation of force and finally a delayed development of force, ie, stretch activation. The rate constants of relaxation, k(rel) (s-1), and delayed force development, k(df) (s-1), in the stretch activation response are indicators of crossbridge cycling kinetics. cMyBP-C(t3SA) myocardium had baseline k(rel) and k(df) similar to WT myocardium, but, unlike WT, k(rel) and k(df) were not accelerated by PKA treatment. Reduced dobutamine augmentation of systolic function in cMyBP-C(t3SA) hearts during echocardiography corroborated the stretch activation findings. Furthermore, cMyBP-C(t3SA) hearts exhibited basal echocardiographic findings of systolic dysfunction, diastolic dysfunction, and hypertrophy. Conversely, cMyBP-C(tWT) hearts performed similar to WT. Thus, PKA phosphorylation of cMyBP-C accelerates crossbridge kinetics and loss of this regulation leads to cardiac dysfunction.
正常的心脏功能需要收缩的动态调节。β1-肾上腺素能诱导的心肌肌球蛋白结合蛋白(cMyBP)-C的蛋白激酶(PK)A磷酸化可能调节横桥动力学以调节收缩。我们在缺乏cMyBP-C上3个PKA位点的小鼠模型(即cMyBP-C(t3SA))中通过机械测量和超声心动图对这一观点进行了测试。我们通过在cMyBP-C基因敲除背景下转基因表达具有丝氨酸到丙氨酸突变的突变型cMyBP-C来构建该模型。蛋白质免疫印迹、免疫荧光和体外磷酸化相结合表明,与正常野生型(WT)相比,不可被PKA磷酸化的cMyBP-C表达量为74%,且在肌节中定位正确。WT cMyBP-C以72%的相似表达量作为对照,即cMyBP-C(tWT)。去表皮心肌对拉伸的反应是力立即增加,随后是力的短暂松弛,最后是力的延迟发展,即拉伸激活。拉伸激活反应中松弛速率常数k(rel)(秒-1)和延迟力发展速率常数k(df)(秒-1)是横桥循环动力学的指标。cMyBP-C(t3SA)心肌的基线k(rel)和k(df)与WT心肌相似,但与WT不同的是,PKA处理并未加速k(rel)和k(df)。超声心动图检查期间,cMyBP-C(t3SA)心脏中多巴酚丁胺增强收缩功能的作用减弱,这证实了拉伸激活的结果。此外,cMyBP-C(t3SA)心脏表现出收缩功能障碍、舒张功能障碍和肥大的基础超声心动图表现。相反,cMyBP-C(tWT)心脏的表现与WT相似。因此,cMyBP-C的PKA磷酸化加速横桥动力学,而这种调节的丧失会导致心脏功能障碍。