Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305.
Department of Biopharmaceutical Convergence, Sungkyunkwan University School of Pharmacy, Suwon, Gyeonggi-do 16419 South Korea.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2318413121. doi: 10.1073/pnas.2318413121. Epub 2024 Apr 29.
Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the β-myosin heavy chain () can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.
由于肥厚型心肌病相关突变的可变外显率和临床严重程度,确定其致病性具有挑战性。本研究旨在探究不完全外显的 G256E 突变对肌球蛋白功能的早期致病影响,这种影响可能触发致病适应性和肥厚。我们假设 G256E 突变会改变肌球蛋白的生物力学功能,导致细胞功能发生变化。我们开发了一个协作式的研究方案,以在蛋白、肌原纤维、细胞和组织水平上对肌球蛋白功能进行特征分析,从而确定对收缩装置的结构-功能的多尺度影响及其对基因调控和代谢状态的意义。G256E 突变破坏了 S1 头部的传感器区域,并使折叠回状态的肌球蛋白比例减少了 33%,从而有更多的肌球蛋白头部可用于收缩。经过基因编辑的人类诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)的肌原纤维表现出更大和更快的张力发展。这种超收缩表型在单细胞 hiPSC-CMs 和工程化心脏组织中仍然存在。我们证明了在不同尺度上,G256E 突变导致的肌球蛋白超收缩功能是一种主要的致病后果,突出了该基因变异的致病性。单细胞转录组和代谢谱分析表明,线粒体基因上调,线粒体呼吸增加,表明早期存在生物能量变化。这项工作突出了我们的多尺度平台的优势,该平台可用于系统地评估蛋白和收缩细胞器水平上基因变异的致病性及其对细胞和组织功能的早期影响。我们相信,该平台可以帮助阐明其他遗传性心血管疾病的基因型-表型关系。