Serafinowski Pawel J, Garland Peter B
Cancer Research UK Centre for Cancer Therapeutics, Sutton, Surrey, UK SM2 5NG.
Org Biomol Chem. 2008 Sep 21;6(18):3284-91. doi: 10.1039/b806902f. Epub 2008 Jul 23.
Oligonucleotide microarray fabrication by chemical synthesis using photoacid generators in solid films could have advantages over existing methods, but has not matched the accuracy of conventional synthesis where detritylation is performed with acid solutions. To address this problem, we explored the kinetics and equilibria of nucleoside detritylation in solid films, using trichloroacetic acid (TCA) generated by photolysis from its esters with substituted 2-nitrobenzyl alcohols. We synthesised 25 such esters, all alpha-phenyl substituted, and assessed their potential as solid film photoacid generators. They included sets with (i) mono- or dimethoxy-, (ii) 5-halo-, (iii) alkyl- or aryl-substituted 5-amino-, or (iv) 5-aryl-substituents in the 2-nitro- or 2,6-dinitrobenzyl ring. Absorption maxima of their UV spectra ranged from 230 to 410 nm, with quantum yields at 365 nm from < 0.01 to nearly 1.0. The esters formed optically clear solid films on glass slides without added polymer. Kinetics of intrafilm photoacid generation, proton activity changes and detritylation were measured in situ. The most effective esters for light sensitivity and detritylation were 5-chloro-, 5-bromo-, 4,5-dimethoxy-, and 4- or 5-aryl-substituted 2,6-dinitrobenzyl esters. Photoacid-induced increases in proton activity and detritylation were severely inhibited by polymers containing electronegative heteroatoms, but not by polymers lacking them. In solid films, intrafilm detritylation with photogenerated TCA was fast, but stopped at an equilibrium well short of completion. Both experiment and theory emphasise the inadequacy of attempting to force detritylation with high intrafilm acid activity.
利用固体膜中的光酸发生器通过化学合成制备寡核苷酸微阵列可能比现有方法具有优势,但尚未达到用酸溶液进行脱三苯甲基化的传统合成方法的精度。为了解决这个问题,我们利用光解由其与取代的2-硝基苄醇形成的酯产生的三氯乙酸(TCA),探索了固体膜中核苷脱三苯甲基化的动力学和平衡。我们合成了25种这样的酯,均为α-苯基取代,并评估了它们作为固体膜光酸发生器的潜力。它们包括在2-硝基或2,6-二硝基苄基环中具有(i)单甲氧基或二甲氧基、(ii)5-卤代、(iii)烷基或芳基取代的5-氨基或(iv)5-芳基取代基的系列。它们的紫外光谱最大吸收波长范围为230至410nm,在365nm处的量子产率从<0.01到近1.0。这些酯在未添加聚合物的载玻片上形成光学透明的固体膜。原位测量了膜内光酸产生、质子活性变化和脱三苯甲基化的动力学。对光敏感性和脱三苯甲基化最有效的酯是5-氯代、5-溴代、4,5-二甲氧基以及4-或5-芳基取代的2,6-二硝基苄基酯。含电负性杂原子的聚合物会严重抑制光酸诱导的质子活性增加和脱三苯甲基化,但不含电负性杂原子的聚合物则不会。在固体膜中,用光生TCA进行膜内脱三苯甲基化很快,但在远未完成的平衡状态下就停止了。实验和理论都强调试图通过高膜内酸活性来强制脱三苯甲基化是不够的。