Suppr超能文献

SRC家族激酶中结构域的进化保守排列对于底物识别很重要。

The evolutionarily conserved arrangement of domains in SRC family kinases is important for substrate recognition.

作者信息

Yadav Shalini S, Miller W Todd

机构信息

Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, USA.

出版信息

Biochemistry. 2008 Oct 14;47(41):10871-80. doi: 10.1021/bi800930e. Epub 2008 Sep 20.

Abstract

The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.

摘要

非受体酪氨酸激酶中SH3-SH2-激酶结构域的排列在整个进化过程中一直保守。对于Src家族激酶而言,这些结构域的相对位置对酶的调节很重要;它们使Src激酶组装成自抑制构象。Src家族激酶的SH3和SH2结构域在决定激酶的底物特异性方面还有额外作用。我们通过产生具有不同排列的突变体,探讨了Src家族激酶的结构域排列是否在底物特异性中起作用这一问题。我们的结果表明,结构域位置的改变可导致Src对Sam68和Cas的磷酸化发生特定变化。几个突变体对Cas的磷酸化触发下游信号传导,导致细胞迁移。Src的SH2结构域相对于催化结构域的位置对于正确的底物识别似乎尤为重要,而SH3结构域的位置则更具灵活性。结果表明,SH3和SH2结构域参与底物识别是SH3-SH2-激酶结构严格保守的一个原因。

相似文献

1
The evolutionarily conserved arrangement of domains in SRC family kinases is important for substrate recognition.
Biochemistry. 2008 Oct 14;47(41):10871-80. doi: 10.1021/bi800930e. Epub 2008 Sep 20.
3
Cooperative activation of Src family kinases by SH3 and SH2 ligands.
Cancer Lett. 2007 Nov 8;257(1):116-23. doi: 10.1016/j.canlet.2007.07.012. Epub 2007 Aug 24.
5
The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases.
Crit Rev Biochem Mol Biol. 2018 Oct;53(5):535-563. doi: 10.1080/10409238.2018.1495173. Epub 2018 Sep 5.
6
Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.
FEBS J. 2011 Feb;278(4):643-53. doi: 10.1111/j.1742-4658.2010.07985.x. Epub 2010 Dec 30.
7
Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase.
J Mol Biol. 1999 Nov 5;293(4):971-85. doi: 10.1006/jmbi.1999.3190.
10
Src protein-tyrosine kinase structure and regulation.
Biochem Biophys Res Commun. 2004 Nov 26;324(4):1155-64. doi: 10.1016/j.bbrc.2004.09.171.

引用本文的文献

1
Temperature sensitivities of metazoan and pre-metazoan Src kinases.
Biochem Biophys Rep. 2020 Jun 10;23:100775. doi: 10.1016/j.bbrep.2020.100775. eCollection 2020 Sep.
2
Structure, Function, and Regulation of the SRMS Tyrosine Kinase.
Int J Mol Sci. 2020 Jun 14;21(12):4233. doi: 10.3390/ijms21124233.
3
Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase.
PLoS One. 2015 Jun 19;10(6):e0131062. doi: 10.1371/journal.pone.0131062. eCollection 2015.
4
Bivalent inhibitors of protein kinases.
Crit Rev Biochem Mol Biol. 2014 Mar-Apr;49(2):102-15. doi: 10.3109/10409238.2013.875513. Epub 2014 Feb 25.
5
Regulation of Src and Csk nonreceptor tyrosine kinases in the filasterean Ministeria vibrans.
Biochemistry. 2014 Mar 4;53(8):1320-9. doi: 10.1021/bi4016499. Epub 2014 Feb 18.
7
ABL tyrosine kinases: evolution of function, regulation, and specificity.
Sci Signal. 2010 Sep 14;3(139):re6. doi: 10.1126/scisignal.3139re6.

本文引用的文献

1
The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans.
Nature. 2008 Feb 14;451(7180):783-8. doi: 10.1038/nature06617.
2
Cooperative activation of Src family kinases by SH3 and SH2 ligands.
Cancer Lett. 2007 Nov 8;257(1):116-23. doi: 10.1016/j.canlet.2007.07.012. Epub 2007 Aug 24.
3
A phosphatase activity of Sts-1 contributes to the suppression of TCR signaling.
Mol Cell. 2007 Aug 3;27(3):486-97. doi: 10.1016/j.molcel.2007.06.015.
4
Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals.
Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12021-6. doi: 10.1073/pnas.0600021103. Epub 2006 Jul 27.
6
Individual Cas phosphorylation sites are dispensable for processive phosphorylation by Src and anchorage-independent cell growth.
J Biol Chem. 2006 Jul 28;281(30):20689-20697. doi: 10.1074/jbc.M602311200. Epub 2006 May 17.
7
Cell migration and invasion assays.
Methods. 2005 Oct;37(2):208-15. doi: 10.1016/j.ymeth.2005.08.001.
8
The interplay between Src and integrins in normal and tumor biology.
Oncogene. 2004 Oct 18;23(48):7928-46. doi: 10.1038/sj.onc.1208080.
9
Regulation of integrin-mediated cellular responses through assembly of a CAS/Crk scaffold.
Biochim Biophys Acta. 2004 Jul 5;1692(2-3):63-76. doi: 10.1016/j.bbamcr.2004.03.006.
10
Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes.
Mol Biol Evol. 2004 May;21(5):828-40. doi: 10.1093/molbev/msh077. Epub 2004 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验