Suppr超能文献

适应叶酸缺乏的分子机制。

Molecular mechanisms of adaptation to folate deficiency.

作者信息

Ifergan Ilan, Assaraf Yehuda G

机构信息

Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Vitam Horm. 2008;79:99-143. doi: 10.1016/S0083-6729(08)00404-4.

Abstract

Folic acid is an essential vitamin for a wide spectrum of biochemical reactions; however, unlike bacteria and plants, mammals are devoid of folate biosynthesis and thus must obtain this cofactor from exogenous sources. Therefore, folate deficiency may impair the de novo biosynthesis of purines and thymidylate and thereby disrupt DNA and RNA metabolism, homocysteine remethylation, methionine biosynthesis, and subsequent formation of S-adenosylmethionine (the universal methyl donor) which in turn may lead to altered methylation reactions. This impaired folate-dependent intracellular metabolism can lead to several key pathologies including, for example, megaloblastic anemia, homocysteinemia, cardiovascular disease, embryonic defects, in particular neural tube defects (NTDs), congenital heart defects, and possibly cancer. The current review presents and evaluates the up-to-date knowledge regarding the molecular mechanisms underlying cellular survival and/or adaptation to folate deficiency or insufficiency. These mechanisms of adaptation to folate deficiency generally associated with folate uptake, intracellular folate retention, folate-dependent metabolism, and active folate efflux specifically include: (a) Up- or downregulation of various folate-dependent enzymes like dihydrofolate reductase (DHFR) and thymidylate synthase (TS), (b) Cellular retention of folates via polyglutamylation by the enzyme folylpoly-gamma-glutamate synthetase (FPGS), (c) Overexpression of folate influx systems including the reduced folate carrier (RFC), folate receptor (FR) as well as the proton-coupled folate transporter (PCFT), a recently identified intestinal folate influx transporter optimally functioning at the acidic microclimate of the upper intestinal epithelium, (d) Downregulation of ATP-driven folate efflux transporters of the multidrug resistance protein (MRP; ABCC) family and breast cancer resistance protein (BCRP; ABCG2) that belong to the multidrug resistance (MDR) efflux transporters of the ATP-binding cassette (ABC) superfamily. Moreover, the intricate interplay between various components of the adaptive response to folate deprivation is also discussed.

摘要

叶酸是多种生物化学反应所必需的维生素;然而,与细菌和植物不同,哺乳动物缺乏叶酸生物合成能力,因此必须从外源获取这种辅因子。所以,叶酸缺乏可能会损害嘌呤和胸苷酸的从头生物合成,从而扰乱DNA和RNA代谢、同型半胱氨酸再甲基化、蛋氨酸生物合成以及随后S-腺苷甲硫氨酸(通用甲基供体)的形成,进而可能导致甲基化反应改变。这种叶酸依赖性细胞内代谢受损会引发多种关键病症,例如巨幼细胞贫血、高同型半胱氨酸血症、心血管疾病、胚胎缺陷,尤其是神经管缺陷(NTDs)、先天性心脏缺陷,还可能引发癌症。本综述介绍并评估了有关细胞存活和/或适应叶酸缺乏或不足背后分子机制的最新知识。这些适应叶酸缺乏的机制通常与叶酸摄取、细胞内叶酸保留、叶酸依赖性代谢以及主动叶酸外排有关,具体包括:(a) 上调或下调各种叶酸依赖性酶,如二氢叶酸还原酶(DHFR)和胸苷酸合成酶(TS);(b) 通过叶酸多聚-γ-谷氨酸合成酶(FPGS)进行多聚谷氨酸化作用使细胞保留叶酸;(c) 叶酸流入系统的过表达,包括还原型叶酸载体(RFC)、叶酸受体(FR)以及质子偶联叶酸转运体(PCFT),PCFT是最近发现的一种肠道叶酸流入转运体,在上段肠上皮细胞的酸性微环境中发挥最佳功能;(d) 下调多药耐药蛋白(MRP;ABCC)家族和乳腺癌耐药蛋白(BCRP;ABCG2)的ATP驱动叶酸外排转运体,它们属于ATP结合盒(ABC)超家族的多药耐药(MDR)外排转运体。此外,还讨论了对叶酸剥夺适应性反应各组分之间的复杂相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验