Fitzgerald Megan E, Drohat Alexander C
Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
J Biol Chem. 2008 Nov 21;283(47):32680-90. doi: 10.1074/jbc.M805504200. Epub 2008 Sep 19.
DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G.T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G.T (k(cat)=0.00034 min(-1)) and G.U (k(cat)=0.005 min(-1)) substrates, much slower than k(max) from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in k(cat) for G.T, G.U, and G.FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G.T and G.U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111-308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.
DNA糖基化酶通过去除受损或错配碱基来启动碱基切除修复,产生无嘌呤/无嘧啶(AP)DNA。对于许多糖基化酶而言,AP-DNA保持紧密结合状态,阻碍酶的周转。一个突出的例子是胸腺嘧啶DNA糖基化酶(TDG),它从G.T错配中去除T并识别其他损伤,对CpG二核苷酸处的损伤具有特异性。TDG的周转非常缓慢;随着[产物]/[酶]比值接近1,其活性似乎达到平稳状态。后续的碱基切除修复酶,即AP内切核酸酶1(APE1),可刺激TDG和其他糖基化酶的周转,但其机制在很大程度上仍不清楚。我们使用预稳态动力学和偶联酶(hTDG-hAPE1)荧光测定法,分别检测了人TDG(hTDG)单独存在以及与人APE1(hAPE1)共同存在时的催化活性。对于G.T(kcat = 0.00034 min-1)和G.U(kcat = 0.005 min-1)底物,hTDG的周转极其缓慢,比单周转实验中的kmax慢得多,这证实了AP-DNA的释放是限速步骤。我们意外地发现,对于G.T、G.U和G.FU底物,kcat存在很大差异,这表明切除的碱基被AP-DNA捕获在产物复合物中。对于G.T和G.U底物,hAPE1使hTDG的周转分别提高了42倍和26倍,这是对hAPE1作用的首次定量测量。hAPE1通过破坏产物复合物而非仅仅(通过内切核酸酶作用)消耗AP-DNA来刺激hTDG。对于hTDG催化核心(410个氨基酸中的第111 - 308位氨基酸),这种增强作用更大,这表明N端和C端结构域对于与hAPE1的刺激相互作用是可有可无的。本文还讨论了hAPE1破坏hTDG产物复合物的潜在机制。