Suppr超能文献

协调碱基切除修复的初始步骤。脱嘌呤/脱嘧啶内切核酸酶1通过破坏产物复合物来积极刺激胸腺嘧啶DNA糖基化酶。

Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex.

作者信息

Fitzgerald Megan E, Drohat Alexander C

机构信息

Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

出版信息

J Biol Chem. 2008 Nov 21;283(47):32680-90. doi: 10.1074/jbc.M805504200. Epub 2008 Sep 19.

Abstract

DNA glycosylases initiate base excision repair by removing damaged or mismatched bases, producing apurinic/apyrimidinic (AP) DNA. For many glycosylases, the AP-DNA remains tightly bound, impeding enzymatic turnover. A prominent example is thymine DNA glycosylase (TDG), which removes T from G.T mispairs and recognizes other lesions, with specificity for damage at CpG dinucleotides. TDG turnover is very slow; its activity appears to reach a plateau as the [product]/[enzyme] ratio approaches unity. The follow-on base excision repair enzyme, AP endonuclease 1 (APE1), stimulates the turnover of TDG and other glycosylases, involving a mechanism that remains largely unknown. We examined the catalytic activity of human TDG (hTDG), alone and with human APE1 (hAPE1), using pre-steady-state kinetics and a coupled-enzyme (hTDG-hAPE1) fluorescence assay. hTDG turnover is exceedingly slow for G.T (k(cat)=0.00034 min(-1)) and G.U (k(cat)=0.005 min(-1)) substrates, much slower than k(max) from single turnover experiments, confirming that AP-DNA release is rate-limiting. We find unexpectedly large differences in k(cat) for G.T, G.U, and G.FU substrates, indicating the excised base remains trapped in the product complex by AP-DNA. hAPE1 increases hTDG turnover by 42- and 26-fold for G.T and G.U substrates, the first quantitative measure of the effect of hAPE1. hAPE1 stimulates hTDG by disrupting the product complex rather than merely depleting (endonucleolytically) the AP-DNA. The enhancement is greater for hTDG catalytic core (residues 111-308 of 410), indicating the N- and C-terminal domains are dispensable for stimulatory interactions with hAPE1. Potential mechanisms for hAPE1 disruption of the of hTDG product complex are discussed.

摘要

DNA糖基化酶通过去除受损或错配碱基来启动碱基切除修复,产生无嘌呤/无嘧啶(AP)DNA。对于许多糖基化酶而言,AP-DNA保持紧密结合状态,阻碍酶的周转。一个突出的例子是胸腺嘧啶DNA糖基化酶(TDG),它从G.T错配中去除T并识别其他损伤,对CpG二核苷酸处的损伤具有特异性。TDG的周转非常缓慢;随着[产物]/[酶]比值接近1,其活性似乎达到平稳状态。后续的碱基切除修复酶,即AP内切核酸酶1(APE1),可刺激TDG和其他糖基化酶的周转,但其机制在很大程度上仍不清楚。我们使用预稳态动力学和偶联酶(hTDG-hAPE1)荧光测定法,分别检测了人TDG(hTDG)单独存在以及与人APE1(hAPE1)共同存在时的催化活性。对于G.T(kcat = 0.00034 min-1)和G.U(kcat = 0.005 min-1)底物,hTDG的周转极其缓慢,比单周转实验中的kmax慢得多,这证实了AP-DNA的释放是限速步骤。我们意外地发现,对于G.T、G.U和G.FU底物,kcat存在很大差异,这表明切除的碱基被AP-DNA捕获在产物复合物中。对于G.T和G.U底物,hAPE1使hTDG的周转分别提高了42倍和26倍,这是对hAPE1作用的首次定量测量。hAPE1通过破坏产物复合物而非仅仅(通过内切核酸酶作用)消耗AP-DNA来刺激hTDG。对于hTDG催化核心(410个氨基酸中的第111 - 308位氨基酸),这种增强作用更大,这表明N端和C端结构域对于与hAPE1的刺激相互作用是可有可无的。本文还讨论了hAPE1破坏hTDG产物复合物的潜在机制。

相似文献

2
Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions.
DNA Repair (Amst). 2013 Dec;12(12):1043-52. doi: 10.1016/j.dnarep.2013.09.007. Epub 2013 Oct 24.
3
4
Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8890-5. doi: 10.1073/pnas.0711061105. Epub 2008 Jun 27.
5
The role of the N-terminal domain of human apurinic/apyrimidinic endonuclease 1, APE1, in DNA glycosylase stimulation.
DNA Repair (Amst). 2018 Apr;64:10-25. doi: 10.1016/j.dnarep.2018.02.001. Epub 2018 Feb 11.
6
Base excision repair of tandem modifications in a methylated CpG dinucleotide.
J Biol Chem. 2014 May 16;289(20):13996-4008. doi: 10.1074/jbc.M114.557769. Epub 2014 Apr 2.
8
Interaction of apurinic/apyrimidinic endonuclease 2 (Apn2) with Myh1 DNA glycosylase in fission yeast.
DNA Repair (Amst). 2014 Mar;15:1-10. doi: 10.1016/j.dnarep.2014.01.001. Epub 2014 Feb 1.
9
Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA.
Nucleic Acids Res. 2011 Mar;39(6):2319-29. doi: 10.1093/nar/gkq1164. Epub 2010 Nov 21.
10

引用本文的文献

2
Protein-Protein Interactions in Base Excision Repair.
Biomolecules. 2025 Jun 18;15(6):890. doi: 10.3390/biom15060890.
3
Characterizing the excision of 7,8-dihydro-8-oxoadenine by thymine DNA glycosylase.
J Biol Chem. 2025 Jun 16;301(7):110363. doi: 10.1016/j.jbc.2025.110363.
4
Enhanced thermal stability enables human mismatch-specific thymine-DNA glycosylase to catalyse futile DNA repair.
PLoS One. 2024 Oct 18;19(10):e0304818. doi: 10.1371/journal.pone.0304818. eCollection 2024.
5
3,N4-Etheno-5-methylcytosine blocks TET1-3 oxidation but is repaired by ALKBH2, 3 and FTO.
Nucleic Acids Res. 2024 Nov 11;52(20):12378-12389. doi: 10.1093/nar/gkae818.
6
Uracil-DNA glycosylase efficiency is modulated by substrate rigidity.
Sci Rep. 2023 Mar 8;13(1):3915. doi: 10.1038/s41598-023-30620-0.
7
Characterizing inhibitors of human AP endonuclease 1.
PLoS One. 2023 Jan 18;18(1):e0280526. doi: 10.1371/journal.pone.0280526. eCollection 2023.
8
Characterization of a Novel Thermostable DNA Lyase Used To Prepare DNA for Next-Generation Sequencing.
Chem Res Toxicol. 2023 Feb 20;36(2):162-176. doi: 10.1021/acs.chemrestox.2c00172. Epub 2023 Jan 16.
10
Kinetic Analysis of the Effect of -Terminal Acetylation on Thymine DNA Glycosylase.
Biochemistry. 2022 May 17;61(10):895-908. doi: 10.1021/acs.biochem.1c00823. Epub 2022 Apr 18.

本文引用的文献

1
Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8890-5. doi: 10.1073/pnas.0711061105. Epub 2008 Jun 27.
2
Cyclical DNA methylation of a transcriptionally active promoter.
Nature. 2008 Mar 6;452(7183):45-50. doi: 10.1038/nature06544.
3
The human checkpoint sensor Rad9-Rad1-Hus1 interacts with and stimulates DNA repair enzyme TDG glycosylase.
Nucleic Acids Res. 2007;35(18):6207-18. doi: 10.1093/nar/gkm678. Epub 2007 Sep 12.
4
Excision of 5-halogenated uracils by human thymine DNA glycosylase. Robust activity for DNA contexts other than CpG.
J Biol Chem. 2007 Sep 21;282(38):27578-86. doi: 10.1074/jbc.M704253200. Epub 2007 Jun 29.
5
Base-excision repair of oxidative DNA damage.
Nature. 2007 Jun 21;447(7147):941-50. doi: 10.1038/nature05978.
6
Mechanism of interaction between human 8-oxoguanine-DNA glycosylase and AP endonuclease.
DNA Repair (Amst). 2007 Mar 1;6(3):317-28. doi: 10.1016/j.dnarep.2006.10.022. Epub 2006 Nov 27.
7
The enigmatic thymine DNA glycosylase.
DNA Repair (Amst). 2007 Apr 1;6(4):489-504. doi: 10.1016/j.dnarep.2006.10.013. Epub 2006 Nov 20.
8
The mechanics of base excision repair, and its relationship to aging and disease.
DNA Repair (Amst). 2007 Apr 1;6(4):544-59. doi: 10.1016/j.dnarep.2006.10.017. Epub 2006 Nov 16.
9
Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability.
J Am Chem Soc. 2006 Sep 27;128(38):12510-9. doi: 10.1021/ja0634829.
10
The consensus coding sequences of human breast and colorectal cancers.
Science. 2006 Oct 13;314(5797):268-74. doi: 10.1126/science.1133427. Epub 2006 Sep 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验