Maiti Atanu, Morgan Michael T, Pozharski Edwin, Drohat Alexander C
Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):8890-5. doi: 10.1073/pnas.0711061105. Epub 2008 Jun 27.
Cytosine methylation at CpG dinucleotides produces m(5)CpG, an epigenetic modification that is important for transcriptional regulation and genomic stability in vertebrate cells. However, m(5)C deamination yields mutagenic G.T mispairs, which are implicated in genetic disease, cancer, and aging. Human thymine DNA glycosylase (hTDG) removes T from G.T mispairs, producing an abasic (or AP) site, and follow-on base excision repair proteins restore the G.C pair. hTDG is inactive against normal A.T pairs, and is most effective for G.T mispairs and other damage located in a CpG context. The molecular basis of these important catalytic properties has remained unknown. Here, we report a crystal structure of hTDG (catalytic domain, hTDG(cat)) in complex with abasic DNA, at 2.8 A resolution. Surprisingly, the enzyme crystallized in a 2:1 complex with DNA, one subunit bound at the abasic site, as anticipated, and the other at an undamaged (nonspecific) site. Isothermal titration calorimetry and electrophoretic mobility-shift experiments indicate that hTDG and hTDG(cat) can bind abasic DNA with 1:1 or 2:1 stoichiometry. Kinetics experiments show that the 1:1 complex is sufficient for full catalytic (base excision) activity, suggesting that the 2:1 complex, if adopted in vivo, might be important for some other activity of hTDG, perhaps binding interactions with other proteins. Our structure reveals interactions that promote the stringent specificity for guanine versus adenine as the pairing partner of the target base and interactions that likely confer CpG sequence specificity. We find striking differences between hTDG and its prokaryotic ortholog (MUG), despite the relatively high (32%) sequence identity.
CpG二核苷酸处的胞嘧啶甲基化产生了5-甲基胞嘧啶(m(5)CpG),这是一种表观遗传修饰,对脊椎动物细胞中的转录调控和基因组稳定性至关重要。然而,5-甲基胞嘧啶脱氨基会产生诱变的G.T错配,这与遗传疾病、癌症和衰老有关。人类胸腺嘧啶DNA糖基化酶(hTDG)从G.T错配中去除T,产生一个无碱基(或AP)位点,随后的碱基切除修复蛋白会恢复G.C配对。hTDG对正常的A.T配对无活性,对G.T错配和位于CpG环境中的其他损伤最为有效。这些重要催化特性的分子基础一直未知。在此,我们报告了hTDG(催化结构域,hTDG(cat))与无碱基DNA复合物的晶体结构,分辨率为2.8埃。令人惊讶的是,该酶与DNA以2:1复合物形式结晶,一个亚基如预期那样结合在无碱基位点,另一个亚基结合在未受损(非特异性)位点。等温滴定量热法和电泳迁移率变动实验表明,hTDG和hTDG(cat)可以以1:1或2:1的化学计量比结合无碱基DNA。动力学实验表明,1:1复合物足以实现完全的催化(碱基切除)活性,这表明如果在体内采用2:1复合物,可能对hTDG的某些其他活性很重要,也许是与其他蛋白质的结合相互作用。我们的结构揭示了促进对鸟嘌呤与腺嘌呤作为靶碱基配对伙伴的严格特异性的相互作用,以及可能赋予CpG序列特异性的相互作用。我们发现hTDG与其原核直系同源物(MUG)之间存在显著差异,尽管它们的序列同一性相对较高(32%)。