Suppr超能文献

第2章 皮质脊髓系统的比较解剖学与生理学

Chapter 2 Comparative anatomy and physiology of the corticospinal system.

作者信息

Schieber Marc H

出版信息

Handb Clin Neurol. 2007;82:15-37. doi: 10.1016/S0072-9752(07)80005-4.

Abstract

The corticospinal tract provides the most direct pathway over which the cerebral cortex controls movement. In rodents and marsupials this influence is exerted largely upon interneurons in the dorsal horn of the spinal gray matter. However, ascending the phylogenetic scale through carnivores and primates, the number of corticospinal axons grows and corticospinal terminations shift progressively toward the interneurons of the intermediate zone and ventral horn, ultimately forming increasing numbers of synaptic terminations directly on the motoneurons themselves. Based on this phylogenetic trend, humans are believed to have more direct corticomotoneuronal synapses than any other species, consistent with observations that humans suffer more extensive loss of motility from lesions of the corticospinal tract than do other mammals. Beyond this phylogenetic trend, studies of the corticospinal system in animals have provided insight into the motor abnormalities that result from corticospinal lesions in humans. Corticospinal lesions impair many functionally related muscles and movements in parallel, both because of the divergent output from single corticomotoneuronal cells to multiple motoneuron pools, and because of the convergent input to different motoneuron pools from large, overlapping cortical territories. Furthermore, the weakness, slowness and inflexible, stereotyped movements that remain after corticospinal lesions reflect the loss of input to spinal interneurons and motoneurons from corticospinal neurons, the discharge frequency of which varies with the force, direction and speed of both gross and fine movements. That these deficits resulting from corticospinal lesions are more prominent in humans than in animals indicates, moreover, that animals make greater use of additional descending pathways to control movement. Animal studies have shown that although the bulk of the corticospinal tract arises from the primary motor cortex, this projection is not the only route via which the brain controls movement. Adjacent areas in the frontal and parietal lobes also contribute axons to the corticospinal tract, as well as having corticocortical connections with the motor cortex. Furthermore, the motor cortex and premotor cortex both project to the red nucleus and to the pontomedullary reticular formation, from which the rubrospinal and reticulospinal tracts arise. However, given the limitations on experimental studies in humans, comparative animal studies of the distributed descending system through which the brain controls movement continue to provide deeper understanding and insight into the deficits resulting from human corticospinal lesions, whether caused by stroke, tumor, multiple sclerosis, trauma or ALS.

摘要

皮质脊髓束提供了大脑皮层控制运动的最直接途径。在啮齿动物和有袋动物中,这种影响主要施加于脊髓灰质背角的中间神经元。然而,沿着食肉动物和灵长类动物的进化尺度上升,皮质脊髓轴突的数量增加,且皮质脊髓终末逐渐向中间带和腹角的中间神经元转移,最终在运动神经元自身上直接形成越来越多的突触终末。基于这种系统发育趋势,人们认为人类比其他任何物种都有更多直接的皮质运动神经元突触,这与观察结果一致,即与其他哺乳动物相比,人类因皮质脊髓束损伤而导致的运动能力丧失更为广泛。除了这种系统发育趋势外,对动物皮质脊髓系统的研究还为了解人类皮质脊髓损伤所导致的运动异常提供了线索。皮质脊髓损伤会同时损害许多功能相关的肌肉和运动,这既是因为单个皮质运动神经元细胞向多个运动神经元池的发散性输出,也是因为来自大的、重叠的皮质区域对不同运动神经元池的汇聚性输入。此外,皮质脊髓损伤后残留的无力、缓慢以及僵硬、刻板的运动反映了皮质脊髓神经元对脊髓中间神经元和运动神经元输入的丧失,其放电频率随粗略和精细运动的力量、方向及速度而变化。而且,这些由皮质脊髓损伤导致的缺陷在人类中比在动物中更为突出,这表明动物更多地利用其他下行通路来控制运动。动物研究表明,虽然大部分皮质脊髓束起源于初级运动皮层,但这一投射并非大脑控制运动的唯一途径。额叶和顶叶的相邻区域也向皮质脊髓束贡献轴突,并且与运动皮层有皮质皮质连接。此外,运动皮层和运动前区皮层都投射到红核和脑桥延髓网状结构,从中发出红核脊髓束和网状脊髓束。然而,鉴于对人类进行实验研究存在局限性,对大脑控制运动的分布式下行系统进行的比较性动物研究,继续为深入理解和洞察人类皮质脊髓损伤所导致的缺陷提供帮助,无论这些损伤是由中风、肿瘤、多发性硬化症、创伤还是肌萎缩侧索硬化症引起的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验