Suppr超能文献

一种用于进化算法的高效非支配排序方法。

An efficient non-dominated sorting method for evolutionary algorithms.

作者信息

Fang Hongbing, Wang Qian, Tu Yi-Cheng, Horstemeyer Mark F

机构信息

Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

出版信息

Evol Comput. 2008 Fall;16(3):355-84. doi: 10.1162/evco.2008.16.3.355.

Abstract

We present a new non-dominated sorting algorithm to generate the non-dominated fronts in multi-objective optimization with evolutionary algorithms, particularly the NSGA-II. The non-dominated sorting algorithm used by NSGA-II has a time complexity of O(MN(2)) in generating non-dominated fronts in one generation (iteration) for a population size N and M objective functions. Since generating non-dominated fronts takes the majority of total computational time (excluding the cost of fitness evaluations) of NSGA-II, making this algorithm faster will significantly improve the overall efficiency of NSGA-II and other genetic algorithms using non-dominated sorting. The new non-dominated sorting algorithm proposed in this study reduces the number of redundant comparisons existing in the algorithm of NSGA-II by recording the dominance information among solutions from their first comparisons. By utilizing a new data structure called the dominance tree and the divide-and-conquer mechanism, the new algorithm is faster than NSGA-II for different numbers of objective functions. Although the number of solution comparisons by the proposed algorithm is close to that of NSGA-II when the number of objectives becomes large, the total computational time shows that the proposed algorithm still has better efficiency because of the adoption of the dominance tree structure and the divide-and-conquer mechanism.

摘要

我们提出了一种新的非支配排序算法,用于在多目标优化中与进化算法(特别是NSGA-II)一起生成非支配前沿。NSGA-II所使用的非支配排序算法,对于规模为N的种群和M个目标函数,在一代(迭代)中生成非支配前沿的时间复杂度为O(MN(2))。由于生成非支配前沿占据了NSGA-II总计算时间的大部分(不包括适应度评估的成本),因此加快该算法的速度将显著提高NSGA-II以及其他使用非支配排序的遗传算法的整体效率。本研究中提出的新非支配排序算法通过记录解之间首次比较时的支配信息,减少了NSGA-II算法中存在的冗余比较次数。通过利用一种称为支配树的新数据结构和分治机制,对于不同数量的目标函数,新算法比NSGA-II更快。尽管当目标数量变大时,所提出算法的解比较次数与NSGA-II接近,但总计算时间表明,由于采用了支配树结构和分治机制,所提出的算法仍然具有更高的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验