Zou Xiufen, Chen Yu, Liu Minzhong, Kang Lishan
School of Mathematics and Statistics,Wuhan University, Wuhan 430072, China.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1402-12. doi: 10.1109/TSMCB.2008.926329.
In this paper, we focus on the study of evolutionary algorithms for solving multiobjective optimization problems with a large number of objectives. First, a comparative study of a newly developed dynamical multiobjective evolutionary algorithm (DMOEA) and some modern algorithms, such as the indicator-based evolutionary algorithm, multiple single objective Pareto sampling, and nondominated sorting genetic algorithm II, is presented by employing the convergence metric and relative hypervolume metric. For three scalable test problems (namely, DTLZ1, DTLZ2, and DTLZ6), which represent some of the most difficult problems studied in the literature, the DMOEA shows good performance in both converging to the true Pareto-optimal front and maintaining a widely distributed set of solutions. Second, a new definition of optimality (namely, L-optimality) is proposed in this paper, which not only takes into account the number of improved objective values but also considers the values of improved objective functions if all objectives have the same importance. We prove that L-optimal solutions are subsets of Pareto-optimal solutions. Finally, the new algorithm based on L-optimality (namely, MDMOEA) is developed, and simulation and comparative results indicate that well-distributed L-optimal solutions can be obtained by utilizing the MDMOEA but cannot be achieved by applying L-optimality to make a posteriori selection within the huge Pareto nondominated solutions. We can conclude that our new algorithm is suitable to tackle many-objective problems.
在本文中,我们专注于研究用于解决具有大量目标的多目标优化问题的进化算法。首先,通过使用收敛度量和相对超体积度量,对新开发的动态多目标进化算法(DMOEA)与一些现代算法进行了比较研究,这些现代算法包括基于指标的进化算法、多个单目标帕累托采样以及非支配排序遗传算法II。对于三个可扩展测试问题(即DTLZ1、DTLZ2和DTLZ6),它们代表了文献中研究的一些最困难的问题,DMOEA在收敛到真实帕累托最优前沿和保持广泛分布的解集方面都表现出良好的性能。其次,本文提出了一种新的最优性定义(即L最优性),它不仅考虑了改进目标值的数量,而且如果所有目标具有相同的重要性,还考虑了改进目标函数的值。我们证明了L最优解是帕累托最优解的子集。最后,开发了基于L最优性的新算法(即MDMOEA),模拟和比较结果表明,利用MDMOEA可以获得分布良好的L最优解,而通过在巨大的帕累托非支配解中应用L最优性进行后验选择则无法实现。我们可以得出结论,我们的新算法适用于处理多目标问题。