Suppr超能文献

Substance P influenced gelatinolytic activity via reactive oxygen species in human pulp cells.

作者信息

Wang F-M, Hu T, Cheng R, Tan H, Zhou X-D

机构信息

State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.

出版信息

Int Endod J. 2008 Oct;41(10):856-62. doi: 10.1111/j.1365-2591.2008.01437.x.

Abstract

AIM

To investigate the effects of substance P (SP) on gelatinolytic activity of matrix metalloproteinases (MMPs) in human pulp cells.

METHODOLOGY

Human dental pulp cells were isolated and cultured. Subconfluent cells, between the third and sixth passages, were maintained under serum deprivation for 18 h followed by the treatment of varying doses of SP (1 pmol L(-1), 100 pmol L(-1), 10 nmol L(-1), 1 micromol L(-1) and 100 micromol L(-1)). Conditioned media were then subjected to gelatin zymography using 8% sodium dodecyl sulphate polyacrylamide gel electrophoresis minigels containing 1.5 g L(-1) gelatin. The effect of SP on intracellular reactive oxygen species (ROS) was also examined by confocal microscopy. ROS scavenger N-Acetyl-L-cysteine (NAC, 5 mmol L(-1)) was utilized to evaluate the roles of ROS pathway in mediating the impact of SP on cellular gelatinolytic activity. Data were analysed using analysis of variance with Bonferroni correction for multiple comparisons or an unpaired Student's t-test.

RESULTS

Substance P, at levels above 1 micromol L(-1), remarkably enhanced MMP-2 activity reflected by the band migrating at 66 kDa (P < 0.05). A gelatinolytic band at approximately 44 kDa appeared to be intensified in a SP dose-dependent manner. In addition, it was demonstrated that SP could induce ROS production in pulp cells and ROS scavenger NAC was further found to significantly reduce MMP-2 activity (P < 0.05), as well as other bands of gelatinolytic proteinases.

CONCLUSION

Substance P can influence gelatinolytic activity in human pulp cells via ROS pathway.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验