Blanchard Maxime G, Longpré Jean-Philippe, Wallendorff Bernadette, Lapointe Jean-Yves
Groupe d'étude des protéines membranaires (GEPROM Université de Montréal, C.P. 6128, Succ. "Centre-ville," Montréal, Québec, Canada H3C 1J7.
Am J Physiol Cell Physiol. 2008 Nov;295(5):C1464-72. doi: 10.1152/ajpcell.00560.2007. Epub 2008 Oct 1.
The ion-trap technique is an experimental approach allowing measurement of changes in ionic concentrations within a restricted space (the trap) comprised of a large-diameter ion-selective electrode apposed to a voltage-clamped Xenopus laevis oocyte. The technique is demonstrated with oocytes expressing the Na(+)/glucose cotransporter (SGLT1) using Na(+)- and H(+)-selective electrodes and with the electroneutral H(+)/monocarboxylate transporter (MCT1). In SGLT1-expressing oocytes, bath substrate diffused into the trap within 20 s, stimulating Na(+)/glucose influx, which generated a measurable decrease in the trap Na(+) concentration (Na(+)) by 0.080 +/- 0.009 mM. Membrane hyperpolarization produced a further decrease in Na(+), which was proportional to the increased cotransport current. In a Na(+)-free, weakly buffered solution (pH 5.5), H(+) drives glucose transport through SGLT1, and this was monitored with a H(+)-selective electrode. Proton movements can also be clearly detected on adding lactate to an oocyte expressing MCT1 (pH 6.5). For SGLT1, time-dependent changes in Na(+) or H(+) were also detected during a membrane potential pulse (150 ms) in the presence of substrate. In the absence of substrate, hyperpolarization triggered rapid reorientation of SGLT1 cation binding sites, accompanied by cation capture from the trap. The resulting change in Na(+) or H(+) is proportional to the pre-steady-state charge movement. The ion-trap technique can thus be used to measure steady-state and pre-steady-state transport activities and provides new opportunities for studying electrogenic and electroneutral ion transport mechanisms.
离子阱技术是一种实验方法,可用于测量在由与电压钳制的非洲爪蟾卵母细胞相对的大直径离子选择性电极构成的受限空间(阱)内离子浓度的变化。该技术通过使用钠和氢选择性电极,在表达钠/葡萄糖共转运蛋白(SGLT1)的卵母细胞以及电中性氢/单羧酸转运蛋白(MCT1)上得到了验证。在表达SGLT1的卵母细胞中,浴液中的底物在20秒内扩散到阱中,刺激钠/葡萄糖内流,导致阱中钠浓度(Na⁺)可测量地降低了0.080±0.009 mM。膜超极化使Na⁺进一步降低,这与共转运电流的增加成正比。在无钠、弱缓冲溶液(pH 5.5)中,氢离子驱动葡萄糖通过SGLT1进行转运,这通过氢离子选择性电极进行监测。向表达MCT1的卵母细胞(pH 6.5)中添加乳酸时,也能清晰检测到质子运动。对于SGLT1,在存在底物的情况下,膜电位脉冲(150毫秒)期间也检测到了Na⁺或H⁺随时间的变化。在没有底物的情况下,超极化触发SGLT1阳离子结合位点的快速重新定向,伴随着从阱中捕获阳离子。由此导致的Na⁺或H⁺的变化与稳态前电荷移动成正比。因此,离子阱技术可用于测量稳态和稳态前的转运活性,并为研究生电和电中性离子转运机制提供了新的机会。