Kirmse Knut, Dvorzhak Anton, Kirischuk Sergei, Grantyn Rosemarie
Institute of Neurophysiology, Johannes Müller Centre of Physiology, Charité - University Medicine Berlin, Tucholskystr. 2, 10117 Berlin, Germany.
J Physiol. 2008 Dec 1;586(23):5665-78. doi: 10.1113/jphysiol.2008.161943. Epub 2008 Oct 2.
GABAergic medium-sized striatal output neurons (SONs) provide the principal output for the neostriatum. In vitro and in vivo data indicate that spike discharge of SONs is tightly controlled by effective synaptic inhibition. Although phasic GABAergic transmission critically depends on ambient GABA levels, the role of GABA transporters (GATs) in neostriatal GABAergic synaptic transmission is largely unknown. In the present study we aimed at elucidating the role of GAT-1 in the developing mouse neostriatum (postnatal day (P) 7-34). We recorded GABAergic postsynaptic currents (PSCs) using the whole-cell patch-clamp technique. Based on the effects of NO-711, a specific GAT-1 blocker, we demonstrate that GAT-1 is operative at this age and influences GABAergic synaptic transmission by presynaptic and postsynaptic mechanisms. Presynaptic GABA(B)R-mediated suppression of GABA release was found to be functional at all ages tested; however, there was no evidence for persistent GABA(B)R activity under control conditions, unless GAT-1 was blocked (P12-34). In addition, whereas no tonic GABA(A)R-mediated conductances were detected in SONs until P14, application of a specific GABA(A)R antagonist caused distinct tonic outward currents later in development (P19-34). In the presence of NO-711, tonic GABA(A)R-mediated currents were also observed at P7-14 and were dramatically increased at more mature stages. Furthermore, GAT-1 block reduced the median amplitude of GABAergic miniature PSCs indicating a decrease in quantal size. We conclude that in the murine neostriatum GAT-1 operates in a net uptake mode. It prevents the persistent activation of presynaptic GABA(B)Rs (P12-34) and prevents (P7-14) or reduces (P19-34) tonic postsynaptic GABA(A)R activity.
γ-氨基丁酸能中型纹状体输出神经元(SONs)是新纹状体的主要输出神经元。体外和体内实验数据表明,SONs的放电活动受到有效的突触抑制的严格控制。虽然阶段性γ-氨基丁酸能传递严重依赖于细胞外γ-氨基丁酸水平,但γ-氨基丁酸转运体(GATs)在新纹状体γ-氨基丁酸能突触传递中的作用在很大程度上尚不清楚。在本研究中,我们旨在阐明GAT-1在发育中的小鼠新纹状体(出生后第7天至34天)中的作用。我们使用全细胞膜片钳技术记录γ-氨基丁酸能突触后电流(PSCs)。基于特异性GAT-1阻滞剂NO-711的作用,我们证明GAT-1在这个年龄段发挥作用,并通过突触前和突触后机制影响γ-氨基丁酸能突触传递。发现突触前γ-氨基丁酸B型受体(GABA(B)R)介导的γ-氨基丁酸释放抑制作用在所有测试年龄均起作用;然而,在对照条件下,没有证据表明存在持续性的GABA(B)R活性,除非GAT-1被阻断(出生后第12天至34天)。此外,虽然在出生后第14天之前在SONs中未检测到持续性γ-氨基丁酸A型受体(GABA(A)R)介导的电导,但应用特异性GABA(A)R拮抗剂在发育后期(出生后第19天至34天)引起明显的持续性外向电流。在存在NO-711的情况下,在出生后第7天至14天也观察到持续性GABA(A)R介导的电流,并且在更成熟阶段显著增加。此外,GAT-1阻断降低了γ-氨基丁酸能微小PSCs的中位幅度,表明量子大小减小。我们得出结论,在小鼠新纹状体中,GAT-1以净摄取模式发挥作用。它可防止突触前GABA(B)Rs的持续性激活(出生后第12天至34天),并防止(出生后第7天至14天)或减少(出生后第19天至34天)突触后持续性GABA(A)R活性。