Ran Xue-Qin, Feng Ji-Kang, Liu Yan-Ling, Ren Ai-Min, Zou Lu-Yi, Sun Chia-Chung
State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry and the College of Chemistry, Jilin University, Changchun 130023, People's Republic of China.
J Phys Chem A. 2008 Oct 30;112(43):10904-11. doi: 10.1021/jp805553e. Epub 2008 Oct 4.
Ambipolar diphenylamino end-capped oligofluorenylthiophenes and fluoroarene-thiophene show great potential for application in organic light-emitting diodes (OLEDs). Here, we provide an in-depth investigation on the optical and electronic properties of OF(2)TP-NPh ( 1a), OF(2)DTP-NPh ( 2a), OF(2)TTP-NPh ( 3a), OF(2)QTP-NPh ( 4a), and 2,5-bis-(2,3,5,6-tetrafluoro-4-trifluoromethyl-phenyl)-2,2':5',2'':5'',2'''-quaterthiophene ( 5a). The geometric and electronic structures of the oligomers in the ground-state are studied with density functional theory (DFT) and ab initio Hartree-Fock, whereas the lowest singlet excited states are optimized by ab initio CIS. The energies of the lowest singlet excited states are calculated by employing time-dependent density functional theory (TDDFT). The results show that the highest occupied molecular orbitals, lowest unoccupied molecular orbitals, energy gaps, ionization potentials, and electron affinities for the oligomers are affected by the thiophene chain length and the different end-caps. The absorption and emission spectra exhibit red shifts to some extent due to the increasing thiophene chain length and the enhancing electron-donating property of the end-caps. Furthermore, the large Stokes shifts ranging from 58 to 80 nm are examined, resulting from a more planar conformation of the excited-state between the two adjacent units in the oligomers. All the calculated data show that the fluoroarene-thiophene has improved electron transport rate and charge transfer balance performance, and all the studied molecules can be used as ambipolar-transporting materials in OLEDs.
双极性二苯胺封端的低聚芴基噻吩和氟代芳烃 - 噻吩在有机发光二极管(OLED)中显示出巨大的应用潜力。在此,我们对OF(2)TP - NPh(1a)、OF(2)DTP - NPh(2a)、OF(2)TTP - NPh(3a)、OF(2)QTP - NPh(4a)和2,5 - 双 -(2,3,5,6 - 四氟 - 4 - 三氟甲基 - 苯基)- 2,2':5',2'':5'',2'''- 四噻吩(5a)的光学和电子性质进行了深入研究。利用密度泛函理论(DFT)和从头算Hartree - Fock研究了基态下低聚物的几何和电子结构,而最低单重激发态则通过从头算CIS进行优化。采用含时密度泛函理论(TDDFT)计算最低单重激发态的能量。结果表明,低聚物的最高占据分子轨道、最低未占据分子轨道、能隙、电离势和电子亲和势受噻吩链长度和不同封端的影响。由于噻吩链长度的增加和封端给电子性质的增强,吸收光谱和发射光谱在一定程度上呈现红移。此外,还研究了58至80 nm的大斯托克斯位移,这是由于低聚物中两个相邻单元之间激发态的构象更加平面化所致。所有计算数据表明,氟代芳烃 - 噻吩具有改善的电子传输速率和电荷转移平衡性能,所有研究的分子都可作为OLED中的双极性传输材料。