Lin Bin, Koizumi Amane, Tanaka Nobushige, Panda Satchidananda, Masland Richard H
Massachusetts General Hospital, Harvard Medical School, Thier 429, 50 Blossom Street, Boston, MA 02114, USA.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16009-14. doi: 10.1073/pnas.0806114105. Epub 2008 Oct 3.
The rod and cone cells of the mammalian retina are the principal photoreceptors for image-forming vision. They transmit information by means of a chain of intermediate cells to the retinal ganglion cells, which in turn send signals from the retina to the brain. Loss of photoreceptor cells, as happens in a number of human diseases, leads to irreversible blindness. In a mouse model (rd/rd) of photoreceptor degeneration, we used a viral vector to express in a large number of retinal ganglion cells the light sensitive protein melanopsin, normally present in only a specialized subset of the cells. Whole-cell patch-clamp recording showed photoresponses in these cells even after degeneration of the photoreceptors and additional pharmacological or Cd(2+) block of synaptic function. Interestingly, similar responses were observed across a wide variety of diverse types of ganglion cell of the retina. The newly melanopsin-expressing ganglion cells provided an enhancement of visual function in rd/rd mice: the pupillary light reflex (PLR) returned almost to normal; the mice showed behavioral avoidance of light in an open-field test, and they could discriminate a light stimulus from a dark one in a two-choice visual discrimination alley. Recovery of the PLR was stable for at least 11 months. It has recently been shown that ectopic retinal expression of a light sensitive bacterial protein, channelrhodopsin-2, can restore neuronal responsiveness and simple visual abilities in rd/rd mice. For therapy in human photodegenerations, channelrhodopsin-2 and melanopsin have different advantages and disadvantages; both proteins (or modifications of them) should be candidates.
哺乳动物视网膜中的视杆细胞和视锥细胞是形成图像视觉的主要光感受器。它们通过一系列中间细胞将信息传递给视网膜神经节细胞,而视网膜神经节细胞又将信号从视网膜发送到大脑。在许多人类疾病中发生的光感受器细胞丧失会导致不可逆的失明。在光感受器退化的小鼠模型(rd/rd)中,我们使用病毒载体在大量视网膜神经节细胞中表达通常仅存在于特定细胞亚群中的光敏感蛋白黑视蛋白。全细胞膜片钳记录显示,即使在光感受器退化以及对突触功能进行额外的药理学或Cd(2+)阻断后,这些细胞仍有光反应。有趣的是,在视网膜的各种不同类型的神经节细胞中都观察到了类似的反应。新表达黑视蛋白的神经节细胞增强了rd/rd小鼠的视觉功能:瞳孔对光反射(PLR)几乎恢复正常;小鼠在旷场试验中表现出对光的行为回避,并且它们能够在二选一的视觉辨别通道中区分光刺激和暗刺激。PLR的恢复至少在11个月内保持稳定。最近的研究表明,在视网膜中异位表达光敏感细菌蛋白-2型通道视紫红质可以恢复rd/rd小鼠的神经元反应性和简单视觉能力。对于人类光感受器退化的治疗,-2型通道视紫红质和黑视蛋白有不同优缺点;这两种蛋白(或其修饰形式)都应作为候选对象。