Wang Yuan-Liang, Faiola Francesco, Xu Muyu, Pan Songqin, Martinez Ernest
Department of Biochemistry, University of California at Riverside, CA 92521, USA.
J Biol Chem. 2008 Dec 5;283(49):33808-15. doi: 10.1074/jbc.M806936200. Epub 2008 Oct 6.
Eukaryotic GCN5 acetyltransferases influence diverse biological processes by acetylating histones and non-histone proteins and regulating chromatin and gene-specific transcription as part of multiprotein complexes. In lower eukaryotes and invertebrates, these complexes include the yeast ADA complex that is still incompletely understood; the SAGA (Spt-Ada-Gcn5 acetylase) complexes from yeast to Drosophila that are mostly coactivators; and the ATAC (Ada Two-A containing) complex, only known in Drosophila and still poorly characterized. In contrast, vertebrate organisms, express two paralogous GCN5-like acetyltransferases (GCN5 and PCAF), which have been found so far only in SAGA-type complexes referred to hereafter as the STAGA (SPT3-TAF9-GCN5/PCAF acetylase) complexes. We now report the purification and characterization of vertebrate (human) ATAC-type complexes and identify novel components of STAGA. We show that human ATAC complexes incorporate in addition to GCN5 or PCAF (GCN5/PCAF), other epigenetic coregulators (ADA2-A, ADA3, STAF36, and WDR5), cofactors of chromatin assembly/remodeling and DNA replication machineries (POLE3/CHRAC17 and POLE4), the stress- and TGFbeta-activated protein kinase (TAK1/MAP3K7) and MAP3-kinase regulator (MBIP), additional cofactors of unknown function, and a novel YEATS2-NC2beta histone fold module that interacts with the TATA-binding protein (TBP) and negatively regulates transcription when recruited to a promoter. We further identify the p38 kinase-interacting protein (p38IP/FAM48A) as a novel component of STAGA with distant similarity to yeast Spt20. These results suggest that vertebrate ATAC-type and STAGA-type complexes link specific extracellular signals to modification of chromatin structure and regulation of the basal transcription machinery.
真核生物的GCN5乙酰转移酶通过乙酰化组蛋白和非组蛋白,并作为多蛋白复合物的一部分调节染色质和基因特异性转录,从而影响多种生物学过程。在低等真核生物和无脊椎动物中,这些复合物包括仍未完全了解的酵母ADA复合物;从酵母到果蝇的SAGA(Spt-Ada-Gcn5乙酰转移酶)复合物,它们大多是共激活因子;以及仅在果蝇中已知且特征仍不明确的ATAC(含Ada Two-A)复合物。相比之下,脊椎动物表达两种同源的GCN5样乙酰转移酶(GCN5和PCAF),到目前为止仅在以下称为STAGA(SPT3-TAF9-GCN5/PCAF乙酰转移酶)复合物的SAGA型复合物中发现。我们现在报告了脊椎动物(人类)ATAC型复合物的纯化和特性,并鉴定了STAGA的新组分。我们表明,人类ATAC复合物除了包含GCN5或PCAF(GCN5/PCAF)外,还包含其他表观遗传共调节因子(ADA2-A、ADA3、STAF36和WDR5)、染色质组装/重塑和DNA复制机制的辅助因子(POLE3/CHRAC17和POLE4)、应激和TGFβ激活的蛋白激酶(TAK1/MAP3K7)和MAP3激酶调节剂(MBIP)、功能未知的其他辅助因子,以及一种与TATA结合蛋白(TBP)相互作用并在被招募到启动子时负调节转录的新型YEATS2-NC2β组蛋白折叠模块。我们进一步鉴定了p38激酶相互作用蛋白(p38IP/FAM48A)作为STAGA的新组分,它与酵母Spt20有远缘相似性。这些结果表明,脊椎动物的ATAC型和STAGA型复合物将特定的细胞外信号与染色质结构的修饰和基础转录机制的调节联系起来。