Suppr超能文献

在 Hog1 介导的基因表达中,根据外部渗透压应激条件的严重程度对 SAGA 有选择性需求。

Selective requirement for SAGA in Hog1-mediated gene expression depending on the severity of the external osmostress conditions.

作者信息

Zapater Meritxell, Sohrmann Marc, Peter Matthias, Posas Francesc, de Nadal Eulàlia

机构信息

Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, E-08003 Barcelona, Spain.

出版信息

Mol Cell Biol. 2007 Jun;27(11):3900-10. doi: 10.1128/MCB.00089-07. Epub 2007 Apr 2.

Abstract

Regulation of gene expression by the Hog1 stress-activated protein kinase is essential for proper cell adaptation to osmostress. Hog1 coordinates an extensive transcriptional program through the modulation of transcription. To identify systematically novel components of the transcriptional machinery required for osmostress-mediated gene expression, we performed an exhaustive genome-wide genetic screening, searching for mutations that render cells osmosensitive at high osmolarity and that are associated with reduced expression of osmoresponsive genes. The SAGA and Mediator complexes were identified as putative novel regulators of osmostress-mediated transcription. Interestingly, whereas Mediator is essential for osmostress gene expression, the requirement for SAGA is different depending on the strength of the extracellular osmotic conditions. At mild osmolarity, SAGA mutants show only very slight defects on RNA polymerase II (Pol II) recruitment and gene expression, whereas at severe osmotic conditions, SAGA mutants show completely impaired RNA Pol II recruitment and transcription of osmoresponsive genes. Thus, our results define an essential role for Mediator in osmostress gene expression and a selective role for SAGA under severe osmostress. Our results indicate that the requirement for a transcriptional complex to regulate a promoter might be determined by the strength of the stimuli perceived by the cell through the regulation of interactions between transcriptional complexes.

摘要

Hog1应激激活蛋白激酶对基因表达的调控对于细胞正确适应渗透压胁迫至关重要。Hog1通过调节转录来协调广泛的转录程序。为了系统地鉴定渗透压胁迫介导的基因表达所需的转录机制的新成分,我们进行了全面的全基因组遗传筛选,寻找使细胞在高渗透压下对渗透压敏感且与渗透压响应基因表达降低相关的突变。SAGA和中介体复合物被鉴定为渗透压胁迫介导转录的假定新调节因子。有趣的是,虽然中介体对于渗透压胁迫基因表达至关重要,但SAGA的需求因细胞外渗透条件的强度而异。在轻度渗透压下,SAGA突变体在RNA聚合酶II(Pol II)募集和基因表达上仅表现出非常轻微的缺陷,而在严重渗透条件下,SAGA突变体显示RNA Pol II募集和渗透压响应基因转录完全受损。因此,我们的结果确定了中介体在渗透压胁迫基因表达中的重要作用以及SAGA在严重渗透压胁迫下的选择性作用。我们的结果表明,转录复合物调节启动子的需求可能由细胞通过调节转录复合物之间的相互作用所感知的刺激强度来决定。

相似文献

3
The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes.
Nature. 2004 Jan 22;427(6972):370-4. doi: 10.1038/nature02258.
5
Regulation of transcription elongation in response to osmostress.
PLoS Genet. 2017 Nov 20;13(11):e1007090. doi: 10.1371/journal.pgen.1007090. eCollection 2017 Nov.
6
The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes.
EMBO J. 2007 Jul 11;26(13):3098-108. doi: 10.1038/sj.emboj.7601756. Epub 2007 Jun 14.
7
Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p.
Mol Cell Biol. 2005 May;25(9):3461-74. doi: 10.1128/MCB.25.9.3461-3474.2005.
8
Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
Mol Cell Biol. 2005 Jul;25(13):5626-38. doi: 10.1128/MCB.25.13.5626-5638.2005.
9
The yeast MAPK Hog1 is not essential for immediate survival under osmostress.
FEBS Lett. 2009 Jun 18;583(12):2015-20. doi: 10.1016/j.febslet.2009.05.014. Epub 2009 May 15.

引用本文的文献

1
Med3-mediated NADPH generation to help tolerate hyperosmotic stress.
Appl Environ Microbiol. 2024 Aug 21;90(8):e0096824. doi: 10.1128/aem.00968-24. Epub 2024 Jul 31.
2
Control of Gene Expression via the Yeast CWI Pathway.
Int J Mol Sci. 2022 Feb 4;23(3):1791. doi: 10.3390/ijms23031791.
4
Possible Role for Allelic Variation in Yeast in Ecological Adaptation.
Front Microbiol. 2021 Oct 18;12:741572. doi: 10.3389/fmicb.2021.741572. eCollection 2021.
7
Regulates the Hog1-MAPK Pathway and Is Involved in Response to Hyperosmotic Stress.
Front Microbiol. 2020 Feb 21;11:213. doi: 10.3389/fmicb.2020.00213. eCollection 2020.
8
A genetic analysis reveals novel histone residues required for transcriptional reprogramming upon stress.
Nucleic Acids Res. 2020 Apr 17;48(7):3455-3475. doi: 10.1093/nar/gkaa081.
9
Deletion of the Gene in a Mutant Reverts Virulence in .
J Fungi (Basel). 2019 Nov 15;5(4):107. doi: 10.3390/jof5040107.
10
Nut1/Hos1 and Sas2/Rpd3 control the H3 acetylation of two different sets of osmotic stress-induced genes.
Epigenetics. 2020 Mar;15(3):251-271. doi: 10.1080/15592294.2019.1664229. Epub 2019 Sep 12.

本文引用的文献

1
Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions.
Mol Cell. 2007 Jan 12;25(1):31-42. doi: 10.1016/j.molcel.2006.11.020.
4
Activator-specific recruitment of Mediator in vivo.
Nat Struct Mol Biol. 2006 Feb;13(2):117-20. doi: 10.1038/nsmb1049. Epub 2006 Jan 22.
5
Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
Mol Cell Biol. 2005 Jul;25(13):5626-38. doi: 10.1128/MCB.25.13.5626-5638.2005.
6
Mediator and the mechanism of transcriptional activation.
Trends Biochem Sci. 2005 May;30(5):235-9. doi: 10.1016/j.tibs.2005.03.011.
7
SAGA unveiled.
Trends Biochem Sci. 2005 Jan;30(1):7-10. doi: 10.1016/j.tibs.2004.11.007.
8
When the stress of your environment makes you go HOG wild.
Science. 2004 Nov 26;306(5701):1511-2. doi: 10.1126/science.1104879.
9
MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals.
Am J Physiol Renal Physiol. 2004 Dec;287(6):F1102-10. doi: 10.1152/ajprenal.00225.2004.
10
Global position and recruitment of HATs and HDACs in the yeast genome.
Mol Cell. 2004 Oct 22;16(2):199-209. doi: 10.1016/j.molcel.2004.09.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验