Suppr超能文献

肺炎克雷伯菌中用于将次黄嘌呤作为氮源同化的hpx遗传系统:基因组织与转录调控。

The hpx genetic system for hypoxanthine assimilation as a nitrogen source in Klebsiella pneumoniae: gene organization and transcriptional regulation.

作者信息

de la Riva Lucia, Badia Josefa, Aguilar Juan, Bender Robert A, Baldoma Laura

机构信息

Departament de Bioquímica i Biología Molecular, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.

出版信息

J Bacteriol. 2008 Dec;190(24):7892-903. doi: 10.1128/JB.01022-08. Epub 2008 Oct 10.

Abstract

Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO, and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on sigma(54), is mediated by the Ntr system. In contrast, neither NtrC nor the nitrogen assimilation control protein is involved in the nitrogen control of hpxDE, which is dependent on sigma(70) for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N(4)-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.

摘要

生长实验表明,在有氧条件下,几种肺炎克雷伯菌菌株可以将腺嘌呤和次黄嘌呤用作氮源。这些嘌呤中所有氮的同化表明分解代谢途径是完整的,并且可以继续生成尿囊素。在这里,我们确定了肺炎克雷伯菌中负责将次黄嘌呤氧化为尿囊素的遗传系统。hpx基因簇由七个基因组成,我们提出其分为四个转录单元,即hpxDE、hpxR、hpxO和hpxPQT。参与次黄嘌呤(HpxDE)或尿酸(HpxO)氧化的蛋白质与其他已知催化这些反应的报道酶没有任何相似性,而是与作用于芳香族化合物的加氧酶相似。hpx系统的表达受氮限制和特定底物的存在激活,hpxDE和hpxPQT受这两种信号控制。hpxPQT转录的氮控制依赖于σ⁵⁴,由Ntr系统介导。相比之下,NtrC和氮同化控制蛋白均不参与hpxDE的氮控制,hpxDE转录依赖于σ⁷⁰。这些操纵子被特定底物激活也由不同的效应物和调节蛋白介导。hpxPQT的诱导需要尿酸形成,而hpxDE的表达通过调节蛋白HpxR由次黄嘌呤的存在诱导。这种LysR型调节蛋白与基因间hpxD - hpxR区域中的TCTGC - N⁴ - GCAAA位点结合。当与该位点结合以激活hpxDE时,HpxR负向控制其自身的转录。

相似文献

2
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae.
J Bacteriol. 2011 May;193(9):2197-207. doi: 10.1128/JB.01450-10. Epub 2011 Feb 25.
5
The role of the NAC protein in the nitrogen regulation of Klebsiella aerogenes.
Mol Microbiol. 1991 Nov;5(11):2575-80. doi: 10.1111/j.1365-2958.1991.tb01965.x.
7
The nac (nitrogen assimilation control) gene from Klebsiella aerogenes.
J Bacteriol. 1993 Apr;175(7):2107-15. doi: 10.1128/jb.175.7.2107-2115.1993.
8
A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae.
J Bacteriol. 2010 Oct;192(19):4801-11. doi: 10.1128/JB.00266-10. Epub 2010 Jul 30.
9
Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae.
J Bacteriol. 2007 Nov;189(21):7593-9. doi: 10.1128/JB.01096-06. Epub 2007 Aug 24.
10
Identification of a nitrogen-regulated promoter controlling expression of Klebsiella pneumoniae urease genes.
Mol Microbiol. 1993 Apr;8(1):187-98. doi: 10.1111/j.1365-2958.1993.tb01215.x.

引用本文的文献

1
Anti-Inflammatory Metabolites in the Pathogenesis of Bacterial Infection.
Front Cell Infect Microbiol. 2022 Jun 15;12:925746. doi: 10.3389/fcimb.2022.925746. eCollection 2022.
2
A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
RNA. 2020 Aug;26(8):960-968. doi: 10.1261/rna.075218.120. Epub 2020 Apr 28.
3
Identification of a Formate-Dependent Uric Acid Degradation Pathway in .
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00573-18. Print 2019 Jun 1.
5
Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes.
PLoS One. 2016 Aug 19;11(8):e0159873. doi: 10.1371/journal.pone.0159873. eCollection 2016.
6
Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway.
Acta Crystallogr D Struct Biol. 2016 Jun;72(Pt 6):808-16. doi: 10.1107/S2059798316007099. Epub 2016 May 25.
8
The mononuclear molybdenum enzymes.
Chem Rev. 2014 Apr 9;114(7):3963-4038. doi: 10.1021/cr400443z. Epub 2014 Jan 28.

本文引用的文献

1
Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae.
J Bacteriol. 2007 Nov;189(21):7593-9. doi: 10.1128/JB.01096-06. Epub 2007 Aug 24.
2
3
Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes.
Nat Chem Biol. 2006 Mar;2(3):144-8. doi: 10.1038/nchembio768. Epub 2006 Feb 5.
5
Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli.
Mol Membr Biol. 2005 May-Jun;22(3):251-61. doi: 10.1080/09687860500092927.
7
Molybdenum-containing hydroxylases.
Arch Biochem Biophys. 2005 Jan 1;433(1):107-16. doi: 10.1016/j.abb.2004.08.012.
9
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
10
Lysogeny at mid-twentieth century: P1, P2, and other experimental systems.
J Bacteriol. 2004 Feb;186(3):595-600. doi: 10.1128/JB.186.3.595-600.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验