Suppr超能文献

自动计算的院前严重程度评分与基于医护人员记录的评分相当。

Automatically-computed prehospital severity scores are equivalent to scores based on medic documentation.

作者信息

Reisner Andrew T, Chen Liangyou, McKenna Thomas M, Reifman Jaques

机构信息

US Army Medical Research and Materiel Command, Bioinformatics Cell, Telemedicine and Advanced Technology Research Center, Fort Detrick, Maryland, USA.

出版信息

J Trauma. 2008 Oct;65(4):915-23. doi: 10.1097/TA.0b013e31815eb142.

Abstract

BACKGROUND

Prehospital severity scores can be used in routine prehospital care, mass casualty care, and military triage. If computers could reliably calculate clinical scores, new clinical and research methodologies would be possible. One obstacle is that vital signs measured automatically can be unreliable. We hypothesized that Signal Quality Indices (SQI's), computer algorithms that differentiate between reliable and unreliable monitored physiologic data, could improve the predictive power of computer-calculated scores.

METHODS

In a retrospective analysis of trauma casualties transported by air ambulance, we computed the Triage Revised Trauma Score (RTS) from archived travel monitor data. We compared the areas-under-the-curve (AUC's) of receiver operating characteristic curves for prediction of mortality and red blood cell transfusion for 187 subjects with comparable quantities of good-quality and poor-quality data.

RESULTS

Vital signs deemed reliable by SQI's led to significantly more discriminatory severity scores than vital signs deemed unreliable. We also compared automatically-computed RTS (using the SQI's) versus RTS computed from vital signs documented by medics. For the subjects in whom the SQI algorithms identified 15 consecutive seconds of reliable vital signs data (n = 350), the automatically-computed scores' AUC's were the same as the medic-based scores' AUC's. Using the Prehospital Index in place of RTS led to very similar results, corroborating our findings.

CONCLUSIONS

SQI algorithms improve automatically-computed severity scores, and automatically-computed scores using SQI's are equivalent to medic-based scores.

摘要

背景

院前严重程度评分可用于常规院前护理、大规模伤亡护理和军事分诊。如果计算机能够可靠地计算临床评分,那么新的临床和研究方法将成为可能。一个障碍是自动测量的生命体征可能不可靠。我们假设信号质量指数(SQI),即区分可靠和不可靠监测生理数据的计算机算法,可以提高计算机计算评分的预测能力。

方法

在对空中救护转运的创伤伤员进行的回顾性分析中,我们从存档的行程监测数据中计算修订创伤评分(RTS)。我们比较了187名具有可比数量的高质量和低质量数据的受试者的预测死亡率和红细胞输注的受试者工作特征曲线下面积(AUC)。

结果

被SQI认为可靠的生命体征比被认为不可靠的生命体征导致更具区分性的严重程度评分。我们还比较了自动计算的RTS(使用SQI)与根据医护人员记录的生命体征计算的RTS。对于SQI算法识别出连续15秒可靠生命体征数据的受试者(n = 350),自动计算评分的AUC与基于医护人员评分的AUC相同。使用院前指数代替RTS得出了非常相似的结果,证实了我们的发现。

结论

SQI算法可改善自动计算的严重程度评分,并且使用SQI的自动计算评分等同于基于医护人员的评分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验