Hohenegger Christel, Forest M Gregory
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 1):031501. doi: 10.1103/PhysRevE.78.031501. Epub 2008 Sep 22.
Microbead rheology maps the fluctuations of beads immersed in soft matter to viscoelastic properties of the surrounding medium. In this paper, we present modeling extensions of the seminal results of Mason and Weitz [Phys. Rev. Lett. 74, 1250 (1995)] for a single bead and of Crocker [Phys. Rev. Lett. 85, 888 (2000)] and Levine and Lubensky [Phys. Rev. Lett. 85, 1774 (2000)] for two beads. We formulate the linear response analysis for two beads so that the model equations retain the local diffusive properties of each bead (through the memory kernel of the shell or depletion zone surrounding each bead) and the nonlocal dynamic moduli of the medium separating the beads (through the memory kernel that transmits fluctuations of one bead to the other). We then derive a 3x3 invertible system of equations relating: an isolated bead's autocorrelations, the autocorrelations and cross-correlations of two coupled beads; and the shell radius surrounding each bead, the memory kernels of the shell, and of the medium between the two beads.
微珠流变学通过沉浸在软物质中的珠子的涨落来描绘周围介质的粘弹性特性。在本文中,我们对梅森和韦茨[《物理评论快报》74, 1250 (1995)]关于单个珠子的开创性结果以及克罗克[《物理评论快报》85, 888 (2000)]和莱文与卢本斯基[《物理评论快报》85, 1774 (2000)]关于两个珠子的结果进行了模型扩展。我们为两个珠子制定了线性响应分析,以便模型方程保留每个珠子的局部扩散特性(通过围绕每个珠子的壳层或耗尽区的记忆核)以及分隔珠子的介质的非局部动态模量(通过将一个珠子的涨落传递到另一个珠子的记忆核)。然后,我们推导了一个3×3可逆方程组,该方程组关联:一个孤立珠子的自相关、两个耦合珠子的自相关和互相关;以及围绕每个珠子的壳层半径、壳层的记忆核和两个珠子之间介质的记忆核。