Suppr超能文献

Variation in protein C(alpha)-related one-bond J couplings.

作者信息

Schmidt Jürgen M, Howard Mark J, Maestre-Martínez Mitcheell, Pérez Carlos S, Löhr Frank

机构信息

Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.

出版信息

Magn Reson Chem. 2009 Jan;47(1):16-30. doi: 10.1002/mrc.2337.

Abstract

Four types of polypeptide (1)J(C alpha X) couplings are examined, involving the main-chain carbon C(alpha) and either of four possible substituents. A total 3105 values of (1)J(C alpha H alpha), (1)J(C alpha C beta), (1)J(C alpha C'), and (1)J(C alpha N') were collected from six proteins, averaging 143.4 +/- 3.3, 34.9 +/- 2.5, 52.6 +/- 0.9, and 10.7 +/- 1.2 Hz, respectively. Analysis of variances (ANOVA) reveals a variety of factors impacting on (1)J and ranks their relative statistical significance and importance to biomolecular NMR structure refinement. Accordingly, the spread in the (1)J values is attributed, in equal proportions, to amino-acid specific substituent patterns and to polypeptide-chain geometry, specifically torsions phi, psi, and chi(1) circumjacent to C(alpha). The (1)J coupling constants correlate with protein secondary structure. For alpha-helical phi, psi combinations, (1)J(C alpha H alpha) is elevated by more than one standard deviation (147.8 Hz), while both (1)J(C alpha N') and (1)J(C alpha C beta) fall short of their grand means (9.5 and 33.7 Hz). Rare positive phi torsion angles in proteins exhibit concomitant small (1)J(C alpha H alpha) and (1)J(C alpha N') (138.4 and 9.6 Hz) and large (1)J(C alpha C beta) (39.9 Hz) values. The (1)J(C alpha N') coupling varies monotonously over the phi torsion range typical of beta-sheet secondary structure and is largest (13.3 Hz) for phi around -160 degrees. All four coupling types depend on psi and thus help determine a torsion that is notoriously difficult to assess by traditional approaches using (3)J. Influences on (1)J stemming from protein secondary structure and other factors, such as amino-acid composition, are largely independent.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验