Gilli Paola, Pretto Loretta, Bertolasi Valerio, Gilli Gastone
Dipartimento di Chimica and Centro di Strutturistica Diffrattometrica, Università di Ferrara, I-44100 Ferrara, Italy.
Acc Chem Res. 2009 Jan 20;42(1):33-44. doi: 10.1021/ar800001k.
Unlike normal chemical bonds, hydrogen bonds (H-bonds) characteristically feature binding energies and contact distances that do not simply depend on the donor (D) and acceptor (:A) nature. Instead, their chemical context can lead to large variations even for a same donor-acceptor couple. As a striking example, the weak HO-H...OH(2) bond in neutral water changes, in acidic or basic medium, to the 6-fold stronger and 15% shorter H(2)O...H...OH(2) or HO...H...OH bonds. This surprising behavior, sometimes called the H-bond puzzle, practically prevents prediction of H-bond strengths from the properties of the interacting molecules. Explaining this puzzle has been the main research interest of our laboratory in the last 20 years. Our first contribution was the proposal of RAHB (resonance-assisted H-bond), a new type of strong H-bond where donor and acceptor are linked by a short pi-conjugated fragment. The RAHB discovery prompted new studies on strong H-bonds, finally leading to a general H-bond classification in six classes, called the six chemical leitmotifs, four of which include all known types of strong bonds. These studies attested to the covalent nature of the strong H-bond showing, by a formal valence-bond treatment, that weak H-bonds are basically electrostatic while stronger ones are mixtures of electrostatic and covalent contributions. The covalent component gradually increases as the difference of donor-acceptor proton affinities, DeltaPA, or acidic constants, DeltapK(a), approaches zero. At this limit, the strong and symmetrical D...H...A bonds formed can be viewed as true three-center-four-electron covalent bonds. These results emphasize the role PA/pK(a) equalization plays in strengthening the H-bond, a hypothesis often invoked in the past but never fully verified. In this Account, this hypothesis is reconsidered by using a new instrument, the pK(a) slide rule, a bar chart that reports in separate scales the pK(a)'s of the D-H proton donors and :A proton acceptors most frequently involved in D-H...:A bond formation. Allowing the two scales to shift so to bring selected donor and acceptor molecules into coincidence, the ruler permits graphical evaluation of DeltapK(a) and then empirical appreciation of the D-H...:A bond strength according to the pK(a) equalization principle. Reliability of pK(a) slide rule predictions has been verified by extensive comparison with two classical sources of H-bond strengths: (i) the gas-phase dissociation enthalpies of charged X...H...X and X...H...X bonds derived from the thermodynamic NIST Database and (ii) the geometries of more than 9500 H-bonds retrieved from the Cambridge Structural Database. The results attest that the pK(a) slide rule provides a reliable solution for the long-standing problem of H-bond-strength prediction and represents an efficient and practical tool for making such predictions directly accessible to all scientists.
与普通化学键不同,氢键(H键)的特征在于其结合能和接触距离并不简单地取决于供体(D)和受体(:A)的性质。相反,即使对于相同的供体-受体对,其化学环境也可能导致很大的变化。一个显著的例子是,中性水中较弱的HO-H...OH(2)键在酸性或碱性介质中会转变为强度增强6倍且长度缩短15%的H(2)O...H...OH(2)或HO...H...OH键。这种令人惊讶的行为,有时被称为氢键难题,实际上阻碍了根据相互作用分子的性质预测氢键强度。在过去20年里,解释这个难题一直是我们实验室的主要研究兴趣。我们的第一项贡献是提出了共振辅助氢键(RAHB),这是一种新型的强氢键,其中供体和受体通过一个短的π共轭片段相连。RAHB的发现促使了对强氢键的新研究,最终导致了氢键被分为六类的一般分类,即六个化学主题,其中四类包括所有已知类型的强键。这些研究证明了强氢键的共价性质,通过形式价键处理表明,弱氢键基本上是静电的,而较强的氢键是静电和共价贡献的混合。随着供体-受体质子亲合能之差ΔPA或酸性常数ΔpK(a)接近零,共价成分逐渐增加。在这个极限下,形成的强而对称的D...H...A键可以被视为真正的三中心四电子共价键。这些结果强调了PA/pK(a)均衡在强化氢键中所起的作用,这是过去经常被提及但从未得到充分验证的一个假设。在本报告中,通过使用一种新工具——pK(a)滑动尺重新审视了这个假设,pK(a)滑动尺是一种柱状图,它以单独的刻度报告最常参与D-H...:A键形成的D-H质子供体和:A质子受体的pK(a)值。通过让两个刻度移动,使选定的供体和受体分子重合,该尺子允许对ΔpK(a)进行图形评估,然后根据pK(a)均衡原理对D-H...:A键强度进行经验评估。通过与两个经典的氢键强度来源进行广泛比较,验证了pK(a)滑动尺预测的可靠性:(i)从热力学NIST数据库得出的带电X...H...X和X...H...X键的气相解离焓,以及(ii)从剑桥结构数据库检索到的9500多个氢键的几何结构。结果证明,pK(a)滑动尺为长期存在的氢键强度预测问题提供了一个可靠的解决方案,并且是一种使所有科学家都能直接进行此类预测的高效实用工具。