Nishi Akinori, Kuroiwa Mahomi, Miller Diane B, O'Callaghan James P, Bateup Helen S, Shuto Takahide, Sotogaku Naoki, Fukuda Takaichi, Heintz Nathaniel, Greengard Paul, Snyder Gretchen L
Department of Pharmacology, Kurume University School of Medicine and Japan Science of Technology Agency, Core Research for Evolutional Science and Technology, Kurume, Fukuoka 830-0011, Japan.
J Neurosci. 2008 Oct 15;28(42):10460-71. doi: 10.1523/JNEUROSCI.2518-08.2008.
Phosphodiesterase (PDE) is a critical regulator of cAMP/protein kinase A (PKA) signaling in cells. Multiple PDEs with different substrate specificities and subcellular localization are expressed in neurons. Dopamine plays a central role in the regulation of motor and cognitive functions. The effect of dopamine is largely mediated through the cAMP/PKA signaling cascade, and therefore controlled by PDE activity. We used in vitro and in vivo biochemical techniques to dissect the roles of PDE4 and PDE10A in dopaminergic neurotransmission in mouse striatum by monitoring the ability of selective PDE inhibitors to regulate phosphorylation of presynaptic [e.g., tyrosine hydroxylase (TH)] and postsynaptic [e.g., dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32)] PKA substrates. The PDE4 inhibitor, rolipram, induced a large increase in TH Ser40 phosphorylation at dopaminergic terminals that was associated with a commensurate increase in dopamine synthesis and turnover in striatum in vivo. Rolipram induced a small increase in DARPP-32 Thr34 phosphorylation preferentially in striatopallidal neurons by activating adenosine A(2A) receptor signaling in striatum. In contrast, the PDE10A inhibitor, papaverine, had no effect on TH phosphorylation or dopamine turnover, but instead robustly increased DARPP-32 Thr34 and GluR1 Ser845 phosphorylation in striatal neurons. Inhibition of PDE10A by papaverine activated cAMP/PKA signaling in both striatonigral and striatopallidal neurons, resulting in potentiation of dopamine D(1) receptor signaling and inhibition of dopamine D(2) receptor signaling. These biochemical results are supported by immunohistochemical data demonstrating differential localization of PDE10A and PDE4 in striatum. These data underscore the importance of individual brain-enriched cyclic-nucleotide PDE isoforms as therapeutic targets for neuropsychiatric and neurodegenerative disorders affecting dopamine neurotransmission.
磷酸二酯酶(PDE)是细胞中cAMP/蛋白激酶A(PKA)信号通路的关键调节因子。神经元中表达了多种具有不同底物特异性和亚细胞定位的PDE。多巴胺在运动和认知功能的调节中起核心作用。多巴胺的作用很大程度上是通过cAMP/PKA信号级联介导的,因此受PDE活性的控制。我们使用体外和体内生化技术,通过监测选择性PDE抑制剂调节突触前[如酪氨酸羟化酶(TH)]和突触后[如分子量为32 kDa的多巴胺和cAMP调节磷蛋白(DARPP-32)]PKA底物磷酸化的能力,来剖析PDE4和PDE10A在小鼠纹状体多巴胺能神经传递中的作用。PDE4抑制剂咯利普兰在多巴胺能终末诱导TH Ser40磷酸化大幅增加,这与体内纹状体中多巴胺合成和周转的相应增加相关。咯利普兰通过激活纹状体中的腺苷A(2A)受体信号,优先在纹状体苍白球神经元中诱导DARPP-32 Thr34磷酸化小幅增加。相比之下,PDE10A抑制剂罂粟碱对TH磷酸化或多巴胺周转没有影响,但却能显著增加纹状体神经元中DARPP-32 Thr34和GluR1 Ser845的磷酸化。罂粟碱对PDE10A的抑制在纹状体黑质和纹状体苍白球神经元中均激活了cAMP/PKA信号通路,导致多巴胺D(1)受体信号增强和多巴胺D(2)受体信号抑制。这些生化结果得到了免疫组化数据的支持,该数据表明PDE10A和PDE4在纹状体中的定位不同。这些数据强调了个体脑富集的环核苷酸PDE亚型作为影响多巴胺神经传递的神经精神和神经退行性疾病治疗靶点的重要性。