Douma Erik H, Stoop Jesse, Lingl Matthijs V R, Smidt Marten P, van der Heide Lars P
Macrobian-Biotech B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Parkinnova Therapeutics B.V., Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Cell Biosci. 2024 Oct 25;14(1):132. doi: 10.1186/s13578-024-01312-7.
Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the nigrostriatal pathway, leading to dopamine deficiency and motor impairments. Current treatments, such as L-DOPA, provide symptomatic relief but result in off-target effects and diminished efficacy over time. This study explores an alternative approach by investigating the activation of tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. Specifically, we explore the effects of phosphodiesterase (PDE) inhibition and guanylate cyclase-C (GUCY2C) activation on tyrosine hydroxylase Ser40 phosphorylation and their impact on motor behavior in a 6-hydroxydopamine (6-OHDA) Parkinson's disease model.
Our findings demonstrate that increasing cyclic nucleotide levels through PDE inhibition and GUCY2C activation significantly enhances tyrosine hydroxylase Ser40 phosphorylation. In a Pitx3-deficient mouse model, which mimics the loss of dopaminergic neurons seen in Parkinson's disease, Ser40 phosphorylation remained manipulable despite reduced tyrosine hydroxylase protein levels. Moreover, we observed no evidence of tyrosine hydroxylase degradation due to Ser40 phosphorylation, challenging previous reports. Furthermore, both PDE inhibition and GUCY2C activation resulted in improved motor behavior in the 6-OHDA Parkinson's disease mouse model, highlighting the potential therapeutic benefits of these approaches.
This study underscores the therapeutic potential of enhancing tyrosine hydroxylase Ser40 phosphorylation to improve motor function in Parkinson's disease. Both PDE inhibition and GUCY2C activation represent promising non-invasive strategies to modulate endogenous dopamine biosynthesis and address motor deficits. These findings suggest that targeting cyclic nucleotide pathways could lead to novel therapeutic approaches, either as standalone treatments or in combination with existing therapies like L-DOPA, aiming to provide more durable symptom relief and potentially mitigate neurodegeneration in Parkinson's disease.
帕金森病的特征是黑质纹状体通路中多巴胺能神经元进行性丧失,导致多巴胺缺乏和运动障碍。目前的治疗方法,如左旋多巴,可提供症状缓解,但会产生非靶向效应,且随着时间推移疗效会降低。本研究通过研究多巴胺合成限速酶酪氨酸羟化酶的激活来探索一种替代方法。具体而言,我们探讨了磷酸二酯酶(PDE)抑制和鸟苷酸环化酶-C(GUCY2C)激活对酪氨酸羟化酶Ser40磷酸化的影响及其对6-羟基多巴胺(6-OHDA)帕金森病模型中运动行为的影响。
我们的研究结果表明,通过PDE抑制和GUCY2C激活增加环核苷酸水平可显著增强酪氨酸羟化酶Ser40磷酸化。在模拟帕金森病中所见多巴胺能神经元丧失的Pitx3缺陷小鼠模型中,尽管酪氨酸羟化酶蛋白水平降低,但Ser40磷酸化仍可被调控。此外,我们没有观察到由于Ser40磷酸化导致酪氨酸羟化酶降解的证据,这对先前的报道提出了挑战。此外,PDE抑制和GUCY2C激活均导致6-OHDA帕金森病小鼠模型的运动行为改善,突出了这些方法的潜在治疗益处。
本研究强调了增强酪氨酸羟化酶Ser40磷酸化以改善帕金森病运动功能的治疗潜力。PDE抑制和GUCY2C激活均代表了有前景的非侵入性策略,可调节内源性多巴胺生物合成并解决运动缺陷。这些发现表明,靶向环核苷酸通路可能会带来新的治疗方法,无论是作为单独治疗还是与左旋多巴等现有疗法联合使用,旨在提供更持久的症状缓解并可能减轻帕金森病中的神经退行性变。