Suppr超能文献

运动诱导的氧化应激:细胞机制及其对肌肉力量产生的影响。

Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.

作者信息

Powers Scott K, Jackson Malcolm J

机构信息

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Physiol Rev. 2008 Oct;88(4):1243-76. doi: 10.1152/physrev.00031.2007.

Abstract

The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.

摘要

1978年首次有观点认为体育锻炼会导致自由基介导的组织损伤,在过去三十年里,人们对运动与氧化应激的认识有了大幅增长。尽管运动过程中氧化剂产生的来源仍存在争议,但现在已经明确,静息和收缩的骨骼肌都会产生活性氧和活性氮。重要的是,剧烈和长时间运动可导致收缩肌细胞中的蛋白质和脂质发生氧化损伤。此外,氧化剂可调节多种细胞信号通路,并调控真核细胞中多个基因的表达。这种由氧化剂介导的基因表达变化涉及转录、mRNA稳定性和信号转导水平的改变。此外,已鉴定出许多与氧化剂调节基因相关的产物,包括抗氧化酶、应激蛋白、DNA修复蛋白和线粒体电子传递蛋白。有趣的是,骨骼肌正常产生力量需要低水平和生理水平的活性氧,但高水平的活性氧会促进收缩功能障碍,导致肌肉无力和疲劳。正在进行的研究继续探索氧化剂影响骨骼肌收缩特性的机制,并探索能够保护肌肉免受氧化剂介导功能障碍影响的干预措施。

相似文献

1
Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production.
Physiol Rev. 2008 Oct;88(4):1243-76. doi: 10.1152/physrev.00031.2007.
2
Reactive oxygen species: impact on skeletal muscle.
Compr Physiol. 2011 Apr;1(2):941-69. doi: 10.1002/cphy.c100054.
3
Exercise-induced oxidative stress: Friend or foe?
J Sport Health Sci. 2020 Sep;9(5):415-425. doi: 10.1016/j.jshs.2020.04.001. Epub 2020 May 4.
4
Interplay of oxidants and antioxidants during exercise: implications for muscle health.
Phys Sportsmed. 2009 Dec;37(4):116-23. doi: 10.3810/psm.2009.12.1749.
5
Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage.
Int J Mol Sci. 2019 Jun 20;20(12):3024. doi: 10.3390/ijms20123024.
6
Nitric oxide, reactive oxygen species, and skeletal muscle contraction.
Med Sci Sports Exerc. 2001 Mar;33(3):371-6. doi: 10.1097/00005768-200103000-00006.
7
Exercise-induced oxidative stress in humans: cause and consequences.
Free Radic Biol Med. 2011 Sep 1;51(5):942-50. doi: 10.1016/j.freeradbiomed.2010.12.009. Epub 2010 Dec 16.
8
Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles.
J Physiol Biochem. 2018 Aug;74(3):359-367. doi: 10.1007/s13105-018-0633-1. Epub 2018 May 1.
9
Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update.
Antioxidants (Basel). 2022 Dec 25;12(1):39. doi: 10.3390/antiox12010039.
10
Role of free radicals and antioxidant signaling in skeletal muscle health and pathology.
Infect Disord Drug Targets. 2009 Aug;9(4):428-44. doi: 10.2174/187152609788922573.

引用本文的文献

1
Chronic low water intake is associated with altered exercise-induced oxidative stress and immune cell responses: a cross-sectional study.
J Int Soc Sports Nutr. 2025 Dec;22(1):2551213. doi: 10.1080/15502783.2025.2551213. Epub 2025 Sep 3.
3
Protein Acetylation and NAD+ Homeostasis in Aging Muscle.
Adv Exp Med Biol. 2025;1478:421-443. doi: 10.1007/978-3-031-88361-3_17.
5
Physical Activity, Exerkines, and Their Role in Cancer Cachexia.
Int J Mol Sci. 2025 Aug 19;26(16):8011. doi: 10.3390/ijms26168011.

本文引用的文献

1
Skeletal muscle fatigue: cellular mechanisms.
Physiol Rev. 2008 Jan;88(1):287-332. doi: 10.1152/physrev.00015.2007.
2
Production, detection, and adaptive responses to free radicals in exercise.
Free Radic Biol Med. 2008 Jan 15;44(2):215-23. doi: 10.1016/j.freeradbiomed.2007.07.019. Epub 2007 Jul 31.
3
Free radicals and muscle fatigue: Of ROS, canaries, and the IOC.
Free Radic Biol Med. 2008 Jan 15;44(2):169-79. doi: 10.1016/j.freeradbiomed.2007.03.002. Epub 2007 Mar 12.
5
Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.
Am J Physiol Cell Physiol. 2008 Feb;294(2):C613-26. doi: 10.1152/ajpcell.00232.2007. Epub 2007 Nov 14.
8
Targeting lipoic acid to mitochondria: synthesis and characterization of a triphenylphosphonium-conjugated alpha-lipoyl derivative.
Free Radic Biol Med. 2007 Jun 15;42(12):1766-80. doi: 10.1016/j.freeradbiomed.2007.02.033. Epub 2007 Mar 12.
9
Serum chemistry alterations in Alaskan sled dogs during five successive days of prolonged endurance exercise.
J Am Vet Med Assoc. 2007 May 15;230(10):1486-92. doi: 10.2460/javma.230.10.1486.
10
Antioxidant signaling in skeletal muscle: a brief review.
Exp Gerontol. 2007 Jul;42(7):582-93. doi: 10.1016/j.exger.2007.03.002. Epub 2007 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验