Kawazu Toshihiro, Murakami Shingo, Adachi-Akahane Satomi, Findlay Ian, Ait-Haddou Rachid, Kurachi Yoshihisa, Nomura Taishin
Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
J Physiol Sci. 2008 Dec;58(7):471-80. doi: 10.2170/physiolsci.RP013208. Epub 2008 Oct 21.
Ca(2+) dynamics underlying cardiac excitation-contraction coupling are essential for heart functions. In this study, we constructed microstructure-based models of Ca(2+) dynamics to simulate Ca(2+) influx through individual L-type Calcium channels (LCCs), an effective Ca(2+) diffusion within the cytoplasmic space and in the dyadic space, and the experimentally observed calcium-dependent inactivation (CDI) of the LCCs induced by local and global Ca(2+) sensing. The models consisted of LCCs with distal and proximal Ca(2+) (Calmodulin-Ca(2+) complex) binding sites. In one model, the intra-cellular space was organelle-free cytoplasmic space, and the other was with a dyadic space including sarcoplasmic reticulum membrane. The Ca(2+) dynamics and CDI of the LCCs in the model with and without the dyadic space were then simulated using the Monte Carlo method. We first showed that an appropriate set of parameter values of the models with effectively extra-slow Ca(2+) diffusion enabled the models to reproduce major features of the CDI process induced by the local and global sensing of Ca(2+) near LCCs as measured with single and two spatially separated LCCs by Imredy and Yue (Neuron. 1992;9:197-207). The effective slow Ca(2+) diffusion might be due to association and dissociation of Ca(2+) and Calmodulin (CaM). We then examined how the local and global CDIs were affected by the presence of the dyadic space. The results suggested that in microstructure modeling of Ca(2+) dynamics in cardiac myocytes, the effective Ca(2+) diffusion under CaM-Ca(2+) interaction, the nanodomain structure of LCCs for detailed CDI, and the geometry of subcellular space for modeling dyadic space should be considered.
心脏兴奋 - 收缩偶联过程中潜在的Ca(2+)动力学对心脏功能至关重要。在本研究中,我们构建了基于微观结构的Ca(2+)动力学模型,以模拟Ca(2+)通过单个L型钙通道(LCCs)的内流、Ca(2+)在细胞质空间和二联体空间内的有效扩散,以及由局部和全局Ca(2+)传感诱导的LCCs的实验观察到的钙依赖性失活(CDI)。这些模型由具有远端和近端Ca(2+)(钙调蛋白 - Ca(2+)复合物)结合位点的LCCs组成。在一个模型中,细胞内空间是无细胞器的细胞质空间,另一个模型则包含一个包括肌浆网膜的二联体空间。然后使用蒙特卡罗方法模拟了有无二联体空间模型中LCCs的Ca(2+)动力学和CDI。我们首先表明,具有有效超慢Ca(2+)扩散的模型的一组适当参数值能够使模型重现由Imredy和Yue(《神经元》。1992年;9:197 - 207)用单个和两个空间分离的LCCs测量的LCCs附近局部和全局Ca(2+)传感诱导的CDI过程的主要特征。有效的慢Ca(2+)扩散可能是由于Ca(2+)与钙调蛋白(CaM)的结合和解离。然后我们研究了二联体空间的存在如何影响局部和全局CDI。结果表明,在心肌细胞Ca(2+)动力学的微观结构建模中,应考虑CaM - Ca(2+)相互作用下的有效Ca(2+)扩散、用于详细CDI的LCCs的纳米域结构以及用于模拟二联体空间的亚细胞空间几何形状。