Grant Marianne A, Baron Rebecca M, Macias Alvaro A, Layne Matthew D, Perrella Mark A, Rigby Alan C
Division of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, 99 Brookline Avenue, Boston, MA 02215, USA.
Biochem J. 2009 Feb 15;418(1):103-12. doi: 10.1042/BJ20081427.
The inducible form of nitric oxide synthase (NOS2) plays an important role in sepsis incurred as a result of infection with Gram-negative bacteria that elaborate endotoxin. The HMGA1 (high-mobility group A1) architectural transcription factor facilitates NOS2 induction by binding a specific AT-rich Oct (octamer) sequence in the core NOS2 promoter via AT-hook motifs. The small-molecule MGB (minor-groove binder) netropsin selectively targets AT-rich DNA sequences and can interfere with transcription factor binding. We therefore hypothesized that netropsin would improve survival from murine endotoxaemia by attenuating NOS2 induction through interference with HMGA1 DNA binding to the core NOS2 promoter. Netropsin improved survival from endotoxaemia in wild-type mice, yet not in NOS2-deficient mice, supporting an important role for NOS2 in the beneficial effects of MGB administration. Netropsin significantly attenuated NOS2 promoter activity in macrophage transient transfection studies and the AT-rich HMGA1 DNA-binding site was critical for this effect. EMSAs (electrophoretic mobility-shift assays) demonstrated that netropsin interferes with HMGA1 NOS2 promoter binding and NMR spectroscopy was undertaken to characterize this disruption. Chemical shift perturbation analysis identified that netropsin effectively competes both HMGA1 DNA-binding AT-hooks from the AT-rich NOS2 promoter sequence. Furthermore, NOESY data identified direct molecular interactions between netropsin and A/T base pairs within the NOS2 promoter HMGA1-binding site. Finally, we determined a structure of the netropsin/NOS2 promoter Oct site complex from molecular modelling and dynamics calculations. These findings represent important steps toward refined structure-based ligand design of novel compounds for therapeutic benefit that can selectively target key regulatory regions within genes that are important for the development of critical illness.
诱导型一氧化氮合酶(NOS2)在因感染产生内毒素的革兰氏阴性菌所致的脓毒症中起重要作用。HMGA1(高迁移率族蛋白A1)结构转录因子通过其AT钩基序与NOS2核心启动子中特定的富含AT的八聚体(Oct)序列结合,促进NOS2的诱导。小分子MGB(小沟结合剂)纺锤菌素选择性靶向富含AT的DNA序列,并能干扰转录因子的结合。因此,我们推测纺锤菌素可通过干扰HMGA1与NOS2核心启动子的DNA结合来减弱NOS2的诱导,从而提高小鼠内毒素血症的存活率。纺锤菌素可提高野生型小鼠内毒素血症的存活率,但对NOS2缺陷型小鼠无效,这支持了NOS2在给予MGB的有益作用中起重要作用。在巨噬细胞瞬时转染研究中,纺锤菌素显著减弱了NOS2启动子活性,且富含AT的HMGA1 DNA结合位点对此效应至关重要。电泳迁移率变动分析(EMSA)表明,纺锤菌素干扰HMGA1与NOS2启动子的结合,并采用核磁共振波谱对这种干扰进行表征。化学位移扰动分析表明,纺锤菌素可有效竞争来自富含AT的NOS2启动子序列的HMGA1 DNA结合AT钩。此外,核Overhauser效应光谱(NOESY)数据确定了纺锤菌素与NOS2启动子HMGA1结合位点内的A/T碱基对之间的直接分子相互作用。最后,我们通过分子建模和动力学计算确定了纺锤菌素/NOS2启动子Oct位点复合物的结构。这些发现代表了朝着基于结构的新型化合物精细配体设计迈出的重要一步,这些化合物具有治疗益处,可选择性靶向对危重病发展至关重要的基因内的关键调控区域。