Gómez-Mourelo Pablo, Sánchez Eva, Casasús Luis, Webb Glenn F
Dpto. Matemática Aplicada. ETSI Industriales (Universidad Politécnica de Madrid), c/ José Gutiérrez Abascal 2, Madrid, Spain.
C R Biol. 2008 Nov;331(11):823-36. doi: 10.1016/j.crvi.2008.08.010. Epub 2008 Sep 27.
The aim of this work is to develop and study a fully continuous individual-based model (IBM) for cancer tumor invasion into a spatial environment of surrounding tissue. The IBM improves previous spatially discrete models, because it is continuous in all variables (including spatial variables), and thus not constrained to lattice frameworks. The IBM includes four types of individual elements: tumor cells, extracellular macromolecules (MM), a matrix degradative enzyme (MDE), and oxygen. The algorithm underlying the IBM is based on the dynamic interaction of these four elements in the spatial environment, with special consideration of mutation phenotypes. A set of stochastic differential equations is formulated to describe the evolution of the IBM in an equivalent way. The IBM is scaled up to a system of partial differential equations (PDE) representing the limiting behavior of the IBM as the number of cells and molecules approaches infinity. Both models (IBM and PDE) are numerically simulated with two kinds of initial conditions: homogeneous MM distribution and heterogeneous MM distribution. With both kinds of initial MM distributions spatial fingering patterns appear in the tumor growth. The output of both simulations is quite similar.
这项工作的目的是开发并研究一种完全连续的基于个体的模型(IBM),用于模拟癌症肿瘤侵入周围组织的空间环境。该IBM改进了先前的空间离散模型,因为它在所有变量(包括空间变量)上都是连续的,因此不受晶格框架的限制。IBM包括四种个体元素:肿瘤细胞、细胞外大分子(MM)、基质降解酶(MDE)和氧气。IBM的基础算法基于这四种元素在空间环境中的动态相互作用,并特别考虑了突变表型。制定了一组随机微分方程,以等效方式描述IBM的演化。IBM被扩展为一个偏微分方程(PDE)系统,该系统表示随着细胞和分子数量趋近于无穷大时IBM的极限行为。两种模型(IBM和PDE)都在两种初始条件下进行了数值模拟:MM均匀分布和MM非均匀分布。在两种初始MM分布情况下,肿瘤生长中都会出现空间指状模式。两种模拟的输出非常相似。