Suppr超能文献

癌症的非线性建模:弥合细胞与肿瘤之间的差距。

Nonlinear modelling of cancer: bridging the gap between cells and tumours.

作者信息

Lowengrub J S, Frieboes H B, Jin F, Chuang Y-L, Li X, Macklin P, Wise S M, Cristini V

机构信息

Department of Biomedical Engineering, Center for Mathematical and Computational Biology, University of California at Irvine, Irvine, CA 92697, USA.

出版信息

Nonlinearity. 2010;23(1):R1-R9. doi: 10.1088/0951-7715/23/1/r01.

Abstract

Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis.

摘要

尽管在过去几十年里科学、医学和技术取得了重大进展,但癌症的治愈方法仍然难以捉摸。疾病的起始过程很复杂,包括起始和无血管生长、由于细胞在正常生理条件之外的积累导致缺氧和酸中毒的发生、周围脉管系统诱导血管生成、肿瘤血管化和进一步生长,以及周围组织的侵袭和转移。尽管历史上的重点一直是通过实验和临床观察来研究这些事件,但能够在多个时间和空间尺度上进行分析的数学建模和模拟也对这些努力起到了补充作用。在这里,我们概述这种多尺度建模,重点关注肿瘤的生长阶段,绕过肿瘤发生的初始阶段。虽然我们简要回顾离散建模,但我们的重点是连续介质方法。我们通过考虑不按细胞年龄区分肿瘤细胞的肿瘤进展模型进一步限制范围。我们也不考虑免疫系统相互作用,也不描述治疗模型。我们确实讨论了混合建模框架,其中肿瘤组织使用离散(细胞尺度)和连续介质(肿瘤尺度)元素进行建模,从而将微米尺度与厘米尺度的肿瘤连接起来。我们回顾了最近将实验数据纳入模型参数的例子。我们表明,最近的数学建模预测,细胞营养物质、氧气和生长因子的运输限制可能导致细胞死亡,进而导致形态不稳定,为通过肿瘤指状突起和碎片化进行侵袭提供了一种机制。这些条件会对细胞生存能力产生选择压力,并可能导致额外的基因突变。数学建模进一步表明,控制肿瘤质量形状的参数也控制其侵袭能力。因此,肿瘤形态可能作为侵袭性和治疗预后的预测指标。

相似文献

1
Nonlinear modelling of cancer: bridging the gap between cells and tumours.
Nonlinearity. 2010;23(1):R1-R9. doi: 10.1088/0951-7715/23/1/r01.
2
Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
Bull Math Biol. 2018 Jun;80(6):1435-1475. doi: 10.1007/s11538-018-0406-6. Epub 2018 Mar 16.
3
A Multiscale Mathematical Model of Tumour Invasive Growth.
Bull Math Biol. 2017 Mar;79(3):389-429. doi: 10.1007/s11538-016-0237-2. Epub 2017 Feb 16.
4
Microenvironment driven invasion: a multiscale multimodel investigation.
J Math Biol. 2009 Apr;58(4-5):579-624. doi: 10.1007/s00285-008-0210-2. Epub 2008 Oct 7.
5
Predictions of tumour morphological stability and evaluation against experimental observations.
J R Soc Interface. 2011 Jan 6;8(54):16-29. doi: 10.1098/rsif.2010.0194. Epub 2010 Jun 2.
6
Directionality of Macrophages Movement in Tumour Invasion: A Multiscale Moving-Boundary Approach.
Bull Math Biol. 2020 Nov 19;82(12):148. doi: 10.1007/s11538-020-00819-7.
7
A theoretical analysis of the scale separation in a model to predict solid tumour growth.
J Theor Biol. 2022 Aug 21;547:111173. doi: 10.1016/j.jtbi.2022.111173. Epub 2022 May 27.
9
Mathematical Models of Cancer Cell Plasticity.
J Oncol. 2019 Oct 31;2019:2403483. doi: 10.1155/2019/2403483. eCollection 2019.

引用本文的文献

2
Phenotype structuring in collective cell migration: a tutorial of mathematical models and methods.
J Math Biol. 2025 May 16;90(6):61. doi: 10.1007/s00285-025-02223-y.
3
Deformations of acid-mediated invasive tumors in a model with Allee effect.
J Math Biol. 2025 May 5;90(6):55. doi: 10.1007/s00285-025-02209-w.
4
PSA bounce: understanding temporal fluctuations in prostate cancer after external radiotherapy.
Clin Transl Oncol. 2024 Dec 20. doi: 10.1007/s12094-024-03816-7.
6
Mathematical model of MMC chemotherapy for non-invasive bladder cancer treatment.
Front Oncol. 2024 May 31;14:1352065. doi: 10.3389/fonc.2024.1352065. eCollection 2024.
7
Morphological Stability for in silico Models of Avascular Tumors.
Bull Math Biol. 2024 May 17;86(7):75. doi: 10.1007/s11538-024-01297-x.
8
Modeling tumors as species-rich ecological communities.
bioRxiv. 2024 Apr 26:2024.04.22.590504. doi: 10.1101/2024.04.22.590504.
9
"Patchiness" in mechanical stiffness across a tumor as an early-stage marker for malignancy.
BMC Ecol Evol. 2024 Mar 14;24(1):33. doi: 10.1186/s12862-024-02221-6.
10
Editorial: Reshaping the diagnostic process in oncology: science versus technology.
Front Oncol. 2023 Oct 24;13:1321688. doi: 10.3389/fonc.2023.1321688. eCollection 2023.

本文引用的文献

1
Modelling Morphogenesis: From Single Cells to Crawling Slugs.
J Theor Biol. 1997 Feb 7;184(3):229-235. doi: 10.1006/jtbi.1996.0237.
3
A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth.
J Sci Comput. 2008 Jun 1;35(2-3):266-299. doi: 10.1007/s10915-008-9190-z.
4
An Adaptive Multigrid Algorithm for Simulating Solid Tumor Growth Using Mixture Models.
Math Comput Model. 2011 Jan 1;53(1-2):1-20. doi: 10.1016/j.mcm.2010.07.007.
5
A single-cell approach in modeling the dynamics of tumor microregions.
Math Biosci Eng. 2005 Jul;2(3):643-55. doi: 10.3934/mbe.2005.2.643.
7
Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis.
J Theor Biol. 2010 Jun 21;264(4):1254-78. doi: 10.1016/j.jtbi.2010.02.036. Epub 2010 Mar 18.
9
An elasto-visco-plastic model of cell aggregates.
J Theor Biol. 2010 Jan 7;262(1):35-47. doi: 10.1016/j.jtbi.2009.08.023. Epub 2009 Aug 25.
10
Multi-scale models of cell and tissue dynamics.
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3525-53. doi: 10.1098/rsta.2009.0095.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验